Журналы →  CIS Iron and Steel Review →  2016 →  №1 →  Назад

Название Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates
DOI 10.17580/cisisr.2016.01.06
Автор V. M. Kolokoltsev, K. N. Vdovin, D. A. Gorlenko, A. E. Gulin
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

V. M. Kolokoltsev, Dr. Eng., Prof., Rector
K. N. Vdovin, Dr. Eng., Prof., e-mail: kn.vdovin@gmail.com
D. A. Gorlenko, Cand. Eng., Assistant of Dept. of Foundry and Materials, e-mail: gorldima@yandex.ru
A. E. Gulin, Cand. Eng., Assistant Prof., Dept. of Material Processing Technologies

Реферат

The paper presents the relationship between the value of the stacking fault energy of Hadfield steel and the cooling rate of the casting. An scanning electron Х-ray spectral electron microanalysis was used to show that the rate of cooling influences the alloying of austenite with manganese, chromium and silicon. This influence is reflected by the non-monotone change of the stacking fault energy with the maximum value at cooling rates of 110–240 °С/min. At these values of the cooling rate, the value of the stacking fault energy exceeds 48 mJ/m2, resulting in the qualitative change of the deformation mechanism from twinning (twinning-induced plasticity) to dislocation sliding (sliding-induced plasticity). The latter mechanism is characterized by the minimum thickness and abrasive wear resistance of the hardened layer formed on the wearing surface. The alloys cooled at the rates lower than 60 °С/min and higher than 250 °С/min have the value of the stacking fault energy lower than 40 mJ/m2. In such alloys, the process of deformation twinning is more intensive, and the formed hardened layer has a higher value of abrasive wear resistance. The research group used scanning probe microscopy to investigate the influence of the stacking fault energy on the geometrical parameters of the deformation twins formed on the surface of Hadfield steel in the process of abrasive wear.

The research was financially supported by the grant of the Russian Science Foundation (project no. 15-19-10020).

Ключевые слова Hadfield steel, stacking fault energy, deformation twinning, abrasive wear resistance, X-ray spectral electron microanalysis, scanning probe microscopy
Библиографический список

1. Sysoev A. M. Rafinirovanie i modifitsirovanie stali 110G13L kompleksom titan-bor-kaltsiy (Refining and modification of the steel 110G13L by the complex titanium-boron-calcium). Vestnik MBTU im. G. I. Nosova = Almanac of MGTU named after G. I. Nosov. 2008. № 1. pp. 43–45.
2. Wen Y. H., Peng H. B., Si H. T., Xiong R. L., Raabe D. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials and design. 2014. Vol. 55 (March 2014). pp. 798–804. Doi: 10.1016/j.matdes.2013.09.057.
3. Xiong R. L., Peng H. B., Wang S. L., Si H. T., Wen Y. H. Effect of stacking fault energy on work hardening behaviors in Fe–Mn–Si–C high manganese steels by varying silicon and carbon contents. Materials and design. 2015. Volume 85 (15 November 2015). pp. 707–714. Doi: 10.1016/j.matdes.2015.07.072.
4. Mejía I., Bedolla-Jacuinde A., Pablo J.R.. Sliding wear behavior of a high – Mn austenitic twinning induced plasticity (TWIP) steel microalloyed with Nb. Wear. 2013. Vol. 301. Iss. 1–2 (April–May 2013). pp. 590–597. Doi: 10.1016/j.wear.2013.01.054.
5. Zambrano O. A., Aguilar Y., Valdés J., Rodríguez S. A., Coronado J. J. Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels. Wear. 2016. Vol. 348–349 (15 February 2016). pp. 61–68. Doi: 10.1016/j.wear.2015.11.019.
6. Park K. T., Jin K. G., Han S. H., Hwang S. W., Choi K. Y., Lee C. S. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition. Materials science and engineering A. 2010. Vol. 527. Iss. 16–17 (25 June 2010). pp. 3651–3661. Doi: 10.1016/j.msea.2010.02.058.
7. Abbasi M., Kheirandish S., Kharrazi Y., Hejazi J. The fracture and plastic deformation of aluminum alloyed Hadfield steels. Materials science and engineering A. 2009. Vol. 513–514 (15 July 2009). pp. 72–76. Doi: 10.1016/j.msea.2009.02.023.
8. Koyama M., Sawaguchi T., Lee T. K., Lee C. S., Tsuzaki K. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels. Materials science and engineering A. 2011. Vol. 528. Issue 24 (15 September 2011). pp. 7310–7316. Doi: 10.1016/j.msea.2011.06.011.
9. Ullrich C., Eckner R., Krüger L., Martin S., Klemm V., Rafaja D. Interplay of microstructure defects in austenitic steel with medium stacking fault energy. Materials science and engineering A. 2016. Volume 649 (1 January 2016). pp. 390–399. Doi: 10.1016/j.msea.2015.10.021.
10. Kowalska J., Ratuszek W., Witkowska M., Zielinska-Lipiec A. Development of microstructure and texture in Fe–26Mn–3Si–3Al alloy during cold-rolling and annealing. Journal of alloys and compounds. 2014. Vol. 615. Suppl. 1 (5 December 2014). pp. S583–S586. Doi: 10.1016/j.jallcom.2013.12.059.
11. Jiménez J. A., Frommeyer G.. Analysis of the microstructure evolution during tensile testing at room temperature of highmanganese austenitic steel. Materials characterization. 2010. Vol. 61. Iss. 2 (February 2010). pp. 221–226. Doi: 10.1016/j.matchar.2009.11.013.
12. Efstathiou C., Sehitoglu H.. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta materialia. 2009. Vol. 58. Issue 5 (March 2010). pp. 1479–1488. Doi: 10.1016/j.actamat.2009.10.054.
13. Curtze S., Kuokkala V.-T.. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta materialia. 2010. Vol. 58. Iss. 15 (September 2010). pp. 5129–5141. Doi: 10.1016/j.actamat.2010.05.049.
14. Seol J.-B., Jung J. E., Jang Y. W., Park C. G.. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/-martensite dual-phase Fe–Mn–C steels. Acta materialia. 2013. Vol. 61. Iss.2 (January 2013). pp. 558–578. Doi: 10.1016/j.actamat.2012.09.078.
15. Karaman I., Sehitoglu H., Gall K., Chumlyakov Y. I., Maier H. J. Deformation of single crystal Hadfield steel by twinning and slip. Acta materialia. 2000. Vol. 48. Iss. 6 (2 April 2000). pp. 1345–1359. Doi: 10.1016/S1359-6454(99)00383-3.
16. Dastur Y. N., Leslie W. C. Mechanism of work hardening in Hadfield manganese steel. Metallurgical and materials transactions A. 1981. Vol. 12. Iss. 5 (May 1981). pp. 749–759. Doi: 10.1007/BF02648339.
17. Chen L., Zhao Y., Qin X. M. Some aspects of high manganese twinning- induced plasticity (TWIP) steel, a review. Acta metallurgica sinica (English letters). 2013. Vol. 26. Iss. 1 (February 2013). pp. 1-15. Doi: 10.1007/s40195-012-0501-x.
18. Pierce D. T., Jiménez J. A., Bentley J., Raabe D., Oskay C., Wittig J. E. The influence of manganese content on the stacking fault and austenite/-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta materialia. 2014. Vol. 68 (15 April 2014). pp. 238–253. Doi: 10.1016/j.actamat.2014.01.001.
19. Phiu-on K. Deformation mechanisms and mechanical properties of hot rolled Fe-Mn-C-(Al)-(Si) austenitic steels. Thesis for Dr. Eng. degree. Samutprakan, Thailand. 2008. 154 p.
20. Besharatloo H. Thermal treatment effects on high-Mn TWIP steels. Diploma thesis for degree master in aerospace science and technology at Universitat Politècnica de Catalunya. 2014. 69 p.
21. Ferraiuolo A., Smith A., Sevillano J. G., de las Cuevas F., Karjalainen P., Pratolongo G., Gouveia H., Mendes Rodrigues M. Metallurgical design of high-strength austenitic Fe-C-Mn steels with excellent formability (Metaldesign). Luxembourg: Publications Office of the European Union. 2012. 155 p. Doi: 10.2777/14874.
22. Hamada A. S. Manufacturing, mechanical properties and corrosion behavior of high-Mn TWIP steels. Oulu : Oulu University press. 2007. 54 p.
23. Bleck W. New Methods in Steel Design. Proceedings of METEC & 2nd ESTAD, 15 to 19 June 2015, Düsseldorf, Germany. Düsseldorf. 2015. pp. 1–9.
24. Spindola M. O., Ferreira de Dafé S. S., do Carmo D. J., Santos D. B. Microstructural characterization and mechanical behavior of a low-carbon 17% Mn steel. Materials research. 2014. Vol. 17(3). pp. 694–699. Doi: http://dx.doi.org/10.1590/S1516-14392014005000066.
25. Grassel O., Frommeyer G., Derder C., Hofmann H. Phase transformations and mechanical properties of Fe–Mn–Si–Al TRIP-steels. Journal de physique IV. 1997. 07 (C5). pp. C5–383–C5–388. Doi: 10.1051/jp4:1997560.
26. Medvedeva N. I., Park M. S., Van Aken D. C., Medvedeva J. E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. Journal of alloys and compounds. 2014. Vol. 582 (5 January 2014). pp. 475–482. Doi: 10.1016/j.jallcom.2013.08.089.
27. Mazancová E., Mazanec K. Stacking fault energy in high manganese alloys. Materials engineering. 2009. Vol. 16. No. 2. pp. 26–31.
28. Xiong R. L., Peng H. B., Si H. T., Zhang W. H., Wen Y. H. Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels. Materials science and engineering A. 2014. Vol. 598 (26 March 2014). pp. 376–386. Doi: 10.1016/j.msea.2014.01.046.
29. Karaman I., Sehitoglu H., Chumlyakov Y. I., Maier H. J., Kireeva I. V. Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta materialia. 2001. Vol. 44. Iss. 2 (2 February 2001). pp. 337–343. Doi: 10.1016/S1359-6462(00)00600-X.
30. Peng X., Zhu D., Hu Z. M., Yi W. F., Liu H. J., Wang M. J. Stacking fault energy and tensile deformation behavior of highcarbon twinning-induced plasticity steels: Effect of Cu addition. Materials and design. 2013. Vol. 45 (March 2013). pp. 518–523. Doi: 10.1016/j.matdes.2012.09.014.
31. Kalidindi S. R. Modeling the strain hardening response of low SFE FCC alloys. International journal of plasticity. 1998. Vol. 14. Iss. 12 (December 1998). pp. 1265–1277. Doi: 10.1016/S0749-6419(98)00054-0.
32. Pierce D. T., Jiménez J. A., Bentley J., Raabe D., Wittig J. E. The influence of stacking fault energy on the microstructural and strainhardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta materialia. 2015. Vol. 100 (November 2015). pp. 178–190. Doi: 10.1016/j.actamat.2015.08.030.
33. Bal B., Gumus B., Gerstein G., Canadinc D., Maier H. J. On the micro-deformation mechanisms active in high-manganese austenitic steels under impact loading. Materials science and engineering A. 2015. Vol. 632 (24 April 2015). pp. 29–34. Doi: 10.1016/j.msea.2015.02.054.

34. Liu S. A., Qian L. H., Meng J. G., Ma P. H., Zhang F. C. On the more persistently-enhanced strain hardening in carbonincreased Fe–Mn–C twinning-induced plasticity steel. Materials science and engineering A. 2015. Vol. 639 (15 July 2015). pp. 425–430. Doi: 10.1016/j.msea.2015.05.044.
35. Zuidema B. K., Subramanyam D. K., Leslie W. C.. The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metallurgical and materials transactions A. 1987. Vol. 18. Iss. 9 (September 1987). pp. 1629–1639. Doi: 10.1007/BF02646146.
36. Das A. Revisiting stacking fault energy of steels. Metallurgical and materials transactions A. 2016. Vol. 47. Iss. 2 (February 2016). pp. 748-768. Doi: 10.1007/s11661-015-3266-9.
37. Saeed-Akbari A., Imlau J., Prahl U., Bleck W. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metallurgical and materials transactions A. 2009. Vol. 40. Iss. 13 (December 2009). pp. 3076-3090. Doi: 10.1007/s11661-009-0050-8.
38. He L., Jin Z. H., Lu J., Tang J. Modulated structures of Fe–10Mn–2Cr–1.5C alloy. Materials and design. 2002. Vol. 23. Iss. 8 (December 2002). pp. 717–720. Doi: 10.1016/S0261-3069(02)00072-9.
39. Atabaki M. M., Jafari S., Abdollah-pour H. Abrasive wear behavior of high chromium cast iron and Hadfield steel - A comparison. Journal of iron and steel research, international. 2012. Vol. 19. Iss. 4 (April 2012). pp. 43–50. Doi: 10.1016/S1006-706X(12)60086-7.
40. Petrov Y. N., Gavriljuk V. G., Berns H., Schmalt F. Surface structure of stainless and Hadfield steel after impact wear. Wear. 2006. Vol. 260. Iss. 6 (10 March 2006) pp. 687–691. Doi: 10.1016/j.wear.2005.04.009.
41. Gumus B., Bal B., Gerstein G., Canadinc D., Maier H. J., Guner F., Elmadagli M. Twinning activities in high-Mn austenitic steels under high-velocity compressive loading. Materials science and engineering A. 2015. Vol. 648 (11 November 2015). pp. 104–112. Doi: 10.1016/j.msea.2015.09.045.
42. Yan W. L., Fang L. A., Zheng Z. G., Sun K., Xu Y. H. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribology international. 2009. Vol. 42. Iss. 5 (May 2009). pp. 634–641. Doi: 10.1016/j.triboint.2008.08.012.
43. Roa J. J., Fargas G., Calvo J., Jiménez-Piqué E., Mateo A. Plastic deformation and damage induced by fatigue in TWIP steels. Materials science and engineering A. 2015. Vol. 628 (25 March 2015). pp. 410–418. Doi: 10.1016/j.msea.2015.01.043.
44. Qi-Xun D., An-Dong W., Xiao-Nong C., Xin-Min L. Stacking fault energy of cryogenic austenitic steels. Chinese physics. 2002. Vol. 11. № 6. pp. 596–600.
45. Gasik M. I. Metallurgiya vysokomargantsevoy stali (Metallurgy of high-manganese steel). Kiev : Tekhnika = Technics. 1990. 136 p.
46. Vdovin K. N., Gorlenko D. A., Nikitenko O. A., Feoktistov N. A. Issledovanie vliyaniya skorosti okhlazhdeniya pri kristallizatsii na razmer austenitnogo zerna litoy stali 110G13L (Investigation of the effect of cooling rate during crystallization on size of austenitic grain of cast steel 110G13L). Mezhdunarodnyi nauchno-issledovatelskiy zhurnal = International scientific-research journal. 2015. № 10-2 (41). pp. 28–31. Doi: 10.18454/IRJ.2015.41.153.
47. Martin S., Wolf S., Martin U., Kruger L., Rafaja D. Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metallurgical and materials transactions A. 2016. Vol. 47. Iss. 1 (January 2016). pp. 49-58. Doi: 10.1007/s11661-014-2684-4.
48. Vdovin K. N., Gorlenko D. A., Feoktistov N. A. Issledovanie vliyaniya skorosti okhlazhdeniya v interval vydeleniya izbytochnykh faz na lituyu mikrostrukturu stali Gadfilda (Investigation of influence of cooling rate in the interval of extraction of excessive phases on cast microstructure of Hadfield steel). Proceedings of the XIX International scientificpractical conference “Metallurgy 2015”. pp. 125–129.

Полный текст статьи Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates
Назад