Journals →  Gornyi Zhurnal →  2019 →  #3 →  Back

ArticleName Resources and geochemistry of groundwater in Karelia
DOI 10.17580/gzh.2019.03.14
ArticleAuthor Borodulina G. S., Levichev M. A.

Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia:

G. S. Borodulina, Senior Researcher, Associate Professor, Candidate of Geologo-Mineralogical Scientist,
M. A. Levichev, Chief Geologist


Ample surface water resources suppress use of groundwater in Karelia. Figures of resource potential, undiscovered potential resources and usable resources of groundwater in the Republic are minimal in the northern regions of Russia. In 2018 there are 35 known deposits of fresh groundwater (107 thou m3/day), 80% of reserves fall at the water-bearing strata of the regions in the periphery of artesian basins of the Russian Platform, the rest reserves occur in the cruystalline formations of the Baltic Massif. The upper zone of active water exchange in both structures typically contains fresh water of predominantly hydrocarbonate calcium–magnesium composition. In the bottom zone, more mineralized (up to salt) water of various chemical type—from hydrocarbonate to chloride—forms. Rare centralized water supply intakes are mostly based on water of hydrocarbonate (hydrocarbonate–chloride) sodium composition, which is behind hydrocarbonate calcium water in terms of physiological value, mainly, owing to low hardness. A considerable constraint for use of groundwater is often high content of iron and radon while these elements govern the geochemical province of the Baltic region of mineral water. In the region, there are 3 known deposits of mineral water, only one deposit—ferriginous Marcial Water—is operated. Of severe concern is nitrate contamination of groundwater as population widely use springs and wells.

keywords Republic of Karelia, groundwater, resource potential, chemical composition

1. Sulimova M. A., Sizyakov V. M., Litvinova T. E., Vasilyev V. V. On possibility of the use of metallurgical production wastes as a sorbent in the industrial water cycle. Chernye Metally. 2016. No. 8. pp. 43–49.
2. Zhuravleva E. S., Chanturiya E. L. Evaluation of the possibility of using electrochemical technology for the preparation of waters and reagents to improve the technological parameters of processing of unoxidized ferruginous quartzites. Chernye Metally. 2018. No. 5. pp. 6–9.
3. Filatov N., Litvinenko A., Syarkioya A., Porttikivi R., Regerand T. (Eds.). Water resources of republic of Karelia and their use for drinking water supply. Experience of Karelian-Finnish cooperation. Petrozavodsk : KarNTs RAN, 2006. 263 p.
4. About the environment of the Republic of Karelia in 2017 : state report. Petrozavodsk, 2018. 292 p.
5. Alaa Farouk Abukila. Assessing the drain estuaries’ water quality in response to pollution abatement. Water Science. 2015. Vol. 29, Iss. 1. pp. 1–18.
6. Xiaoying Yang, Warren R., Yi He, Jinyin Ye, Qiaoling Li, Guoqing Wang. Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Science of The Total Environment. 2018. Vol. 615. pp. 1155–1163.
7. Yazvin L. S. (Ed.). Hydrogeology of the USSR. Moscow : Nedra, 1977. Iss. 3. Groundwater resources and use prospects in the USSR. 279 p.
8. Ieshina A. V., Polenov I. K., Bogachev M. A. et al. Resources and geochemistry of Karelian groundwater. Petrozavodsk, 1987. 149 p.
9. Yazvin L. S. Valuation of undiscovered potential fresh groundwater resources and utility-anddrinking groundwater supply in Russia. Razvedka i okhrana nedr. 2003. No. 10. pp. 13–20.
10. Borevskii B. V., Garaeva T. V., Zubanova T. N., Kurennoi V. V., Oliferova O. A. et al. Map of fresh groundwater resource potential in Russia. Moscow : GIDEK, 2013.
11. Subsoil condition in the Russian Federation in 2016: Newsletter. Saint-Petersburg : Tipografiya “Maier”, 2017. 336 p.
12. Zetsker I. S. Run-off in depth and resources of fresh groundwater. Moscow : Nauchnyi mir, 2012. 372 p.
13. Shiklomanov I. A. (Ed.). Water resources of Russia and their use. Saint-Petersburg, 2008. 600 p.
14. Lozovik P. A., Efremenko N. A. (Eds). Analytical, kinetic and calculation methods in hydrochemical practice. Saint-Petersburg : Nestor-Istoriya, 2017. 270 p.
15. Shvartsev S. L., Ryzhenko B. N., Alekseev V. A., Dutova E. M., Kondratieva I. A. et al. Geological evolution and self-organizatiuo of the water–rock system. Novosibirsk : SO RAN, 2007. Vol. 2: Water–rock system in the conditions of hypergenesis zone. 389 p.
16. Lozovik P. A., Borodulina G. S. Nitrogen compounds in the surface and subsurface waters of Karelia. Water Resources. 2009. Vol. 36, No. 6. pp. 672–682.
17. Krutskikh N. V., Borodulina G. S., Kaznina N. M., Batova Yu. V., Ryazantsev P. A. et al. Geoecological basis for setting up the monitoring of urbanized areas in the north (the example of Petrozavodsk). Trudy Karelskogo nauchnogo tsentra Rossiyskoy akademii nauk. Ekologicheskie issledovaniya. 2016. No. 12. pp. 52–67.
18. Tokarev I. V. , Borodulina G. S., Blazhennikova I. V., Avramenko I. A. Isotope-Geochemical Data on Ferruginous Mineral Waters: Conditions of Formation of “Marcial Waters” Resort, Karelia. Geochemistry International. 2015. Vol. 53, No. 1. С. 83–86.
19. Krainov S. R., Ryzhenko B. N., Shvets V. M. Grounwater geochemistry. Theoretical, applied and ecological aspects. Moscow : TsentrLitNefteGaz, 2012. 672 p.
20. Starinsky A., Katz A. The formation of natural cryogenic brines. Geochimica et Cosmochimica Acta. 2003. Vol. 67, Iss. 8. pp. 1475–1484.
21. Kietäväinen R., Ahonen L., Kukkonen I. T., Niedermann S., Wiersberg T. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland. Geochimica et Cosmochimica Acta. 2014. Vol. 145. pp. 159–174.
22. Stotler R. L., Frape S. K., Ruskeeniemi T., Pitkänen P., Blowes D. W. The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochimica et Cosmochimica Acta. 2012. Vol. 76. pp. 45–67.
23. Glushanin L. V., Sharov N. V., Shchiptsov V. V. (Eds.). Paleoproterozoic Onega structure (geology, tectonics, deep structure and mineralogeny). Petrozavodsk : KarNTs RAN, 2011. 431 p.
24. Baskaran M. Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Cham : Springer, 2016. 276 p.
25. Gruber V., Bossew P., De Cort M., Tollefsen T. The European map of the geogenic radon potential. Journal of Radiological Protection. 2013. Vol. 33, No. 1. pp. 51–60.

Language of full-text russian
Full content Buy