Journals →  Tsvetnye Metally →  2020 →  #1 →  Back

ArticleName Conversion of reducted sulphurous gas from Vanyukov furnace and catalytic activity
DOI 10.17580/tsm.2020.01.05
ArticleAuthor Vasilev Yu. V., Platonov O. I.

Institute Gipronikel LLC, Saint Petersburg, Russia:

Yu. V. Vasilev, Lead Researcher, Candidate of Technical Sciences, e-mail:
O. I. Platonov, Independent Expert, Candidate of Technical Sciences, e-mail:


Treatment of the Vanyukov furnace sulphurous off-gas at the Elemental Sulphur Production Shop of the Copper Smelter of MMC Norilsk Nickel’s Polar Division involves thermal methane reduction of pre-scrubbed furnace gas followed by catalytic conversion of reduced gas. The only catalytic converter (R-1-I) available at the above site is supposed to simultaneously process both hydrogen sulphide and organosulphur compounds (primarily carbonyl sulphide) within a mean temperature range of 240–270 oC, which process requires high-activity catalysts. In order to identify the most active industrial catalyst for single-stage conversion of sulphurous gases, the authors analysed the site’s monitoring data to draw a quantitative activity comparison of a number of catalysts during early operation in the following mean optimum ranges of catalyst temperatures and volume velocities: 240–280 oC and 400–600 h–1. Out of all the catalysts tested in the R-1-I reactor till 2015, the alumina catalyst AOK-78-59 demonstrated the highest activity in terms of hydrogen sulphide conversion, whereas the catalyst O-K with the largest specific surface area (~300 m2/g) was found to have the highest overall activity in terms of general sulphur conversion. The titanium oxide catalyst CRS-31 demonstrated the least activity in the R-1-I reactor. Combination charge with Co – Mo/Al2O3-catalyst did not prove to be effective.

keywords Sulphur recovery unit, reducted sulphurous gas, conversion, Claus reactor, hydrogen sulphide, carbonyl sulphide, catalytic activity

1. Eremin O. G., Eremina G. A. Disposal of sulphur from smelter off-gases. Tsvetnye Metally. 1996. No. 4. pp. 21–23.
2. Grunvald V. R. Gas sulphur technology. Moscow : Khimiya, 1992. 272 p.
3. Grancher P. Advances in Claus technology. Part 1: Studies in reaction mechanics. Hydrocarbon Processing. 1978. Vol. 57, No. 7. pp. 156–160.
4. Clark P. D., Dowing N. I., Huang M. Conversion of CS2 and COS over alumina and titania under Claus process conditions: reaction with H2O and SO2. Applied Catalysis B: Environmental. 2001. Vol. 31. pp. 107–112.
5. Vasilev Yu. V., Zotikov O. V., Platonov O. I., Tsemekhman L. Sh. Achievements and problems of industrial technology of sulphur production from metallurgical sulphurous gases. Tsvetnye Metally. 2015. No. 1. pp. 18–22.
6. Eroshevich S. Yu., Kalayda E. V., Yurev A. I. International conference “Environmental protection and industrial activities in the North” expands the boundaries. Tsvetnye Metally. 2013. No. 6. pp. 94–96.
7. Baron H., Cross F. Direct reduction of SO2 to sulphur. 30th International Conference “Sulphur 2014”. 3–6 November 2014, Paris. London : CRU Publishing, 2014.
8. Ge T., Zuo C., Wei L., Li C. Sulfur production from smelter off-gas using CO–H2 gas mixture as reducing agent over modified Fe/γ-Al2O3 catalysts. Chinese Journal of Chemical Engineering. 2018. Vol. 26. pp. 1920–1927.
9. Ilyukhin I. V., Kozlov A. N., Sapegin Yu. V., Derevnin B. T., Eroshevich S. Yu. Revamping of the sulphur production facility at the Copper Smelter of MMC Norilsk Nickel’s Polar Division. Tsvetnye Metally. 2008. No. 12. pp. 44–46.
10. Sablukova I. V., Ilyukhin I. V., Sergeeva L. V. et al. On selection of catalyst for SO2-containing metallurgical exhaust gas purification. Proceedings of the national conference with international participants “KATEK 2007”. Saint Petersburg, 11–14 December 2007. Novosibirsk : IK SO RAN, 2007. pp. 262–263.
11. Tarasov A. V., Yeremin O. G. Catalytic Reduction of SO2 with Converted Gas to Produce Elemental Sulfur. Sulphur 2005. Moscow, Russia, 23–26 October 2005. Conference papers. London : CRU publishing Ltd, 2005. pp. 63–69.
12. Zaytsev V. I., Kozlov A. N., Ilyukhin I. V., Derevnin B. T., Danilov M. P. Revamping of the first sulphur production line at the Copper Smelter. Tsvetnye Metally. 2007. No. 7. pp. 76–79.
13. Artemova I. I., Zinchenko T. O., Molchanov S. A., Zolotovskiy B. P. Gas sulphur production process optimisation. Kataliz v promyshlennosti. 2009. No. 2. pp. 33–38.
14. Danilov M. P., Severilov A. V., Ilyukhin I. V., Chetverikov O. N., Yatsenko S. P. Comparative laboratory testing of catalysts used in sulphur industry. Tsvetnye Metally. 2004. No. 11. pp. 60–62.
15. TU 6-68-198–02. Alumina catalyst АОК-78-59. Specifications.
16. Hereijgers B., van Nisserooij P., van de Giessen B., van Hoeke M. The benefit of using titania in Claus and tail gas catalysis. Sulphur. 2017. Iss. 369. pp. 26–32.
17. Kovalenko O. N., Kalinkin P. N., Platonov O. I., Kataev M. P., Babkin M. V. Activity of Claus process catalysts for wet gas. Kataliz v promyshlennosti. 2005. No. 4. pp. 23–28.
18. Eremin O. G., Tarasov A. V. Catalytic reduction of sulphurous anhydride with natural gas to produce sulphur. Tsvetnaya metallurgiya. 2016. No. 3. pp. 34–38.
19. Gaikward R. W., Warade A. R., Bhagat S. L. Hydrogen Sulphide (H2S) Gaseous Control in Claus Process. International Journal of Advanced Research. 2016. Vol. 4, No. 4. pp. 664–669.
20. Gazimzyanov N. R., Platonov O. I. Efficiency of Claus Furnace in the Coke – Oven Gas Desulphurization Circuit of MMK. Coke and Chemistry. 2017. Vol. 60, No. 5. pp. 199–202.

Language of full-text russian
Full content Buy