Journals →  Chernye Metally →  2020 →  #8 →  Back

Metal Science
ArticleName Approximation of deformation diagrams of steels by their mechanical characteristics
ArticleAuthor V. A. Tarasov, V. D. Baskakov, M. A. Baburin, D. S. Boyarsky

Bauman Moscow State Technical University (Moscow, Russia):

V. A. Tarasov, Dr. Eng., Prof., “Technology of Aerospace Engineering” Dept., e-mail:
V. D. Baskakov, Dr. Eng., Prof., “Technology of Aerospace Engineering” Dept., e-mail:
M. A. Baburin, Candi Eng., Associate Prof., “Technology of Aerospace Engineering” Dept.
D. S. Boyarsky, Student, “Technology of Aerospace Engineering” Dept.


The task of constructing steels deformation diagrams on the basis of reference data on mechanical characteristics, which is necessary for the analysis of technological processes for plastic shaping of parts, has been solved. It was found that the best approximation of the calculated and experimental data on the deformation diagrams of steels is provided by the approximation based on a parabolic relation or its combination with a power-law one. The parameters of the approximating dependence are found under the condition that the stress reaches the value of the ultimate strength during deformation of steels, proportional to the relative elongation of samples during tensile tests. The proportionality coefficient was determined by statistical studies. The satisfactory approximation to the test results of a structural steels range is shown.

keywords Steels, deformation diagram, conditional stress, approximation parameters, yield strength, ultimate strength, elongation

1. Arzamasov B. N., Solovyeva Т. V., Gerasimov S. А. Construction Materials Handbook. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2006. 636 p.
2. Arzamasov B. N., Makarova V. I., Mukhin G. G. Materials Science: tutorial for universities. 7th stereotyped edition. Moscow: Izdatelstvo MGTU imeni N. E. Baumana. 2005. 645 p.

3. Polukhin P. I., Gun G. Ya., Galkin А. М. Resistance to plastic deformation of metals and alloys. Moscow: Metallurgiya, 1976. 488 p.
4. Foreign analogues of steels and alloys grades. Grade guide [Electronic resource] Available at: (accessed: 13.07.2020).
5. Storakes B. Plastic and visko-plastic instability of a thin tube under internal pressure, torsion and axial tension. JJVS. 1968. Vol. 10. No. 6. pp. 510–529.
6. Hill R. On discontinuous plastic states with special reference to localized necking in thin sheet. Journal of the Mechanics and Physics Solid. 1952. Vol. 1. pp. 19–30.
7. Kushner V. S., Storchak М. G., Burgonova О. Yu., Gubin D. S. Development of a mathematical model for the alloys fl ow curve under adiabatic deformation conditions. Zavodskaya laboratoriya. Diagnostika materialov. 2017. Vol. 83. No. 5. pp. 45–49.
8. Del G. D. Technological mechanics. Moscow: Mashinostroenie, 1978. 174 p.
9. Gryazev М. V., Larin S. N., Pasynkov А. А., Bulychev V. А. On the development of a mathematical model for the process of drawing a hardening material with a clamp through a radial matrix. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2018. No.1. pp. 172–178.
10. Vorontsov А. L. Theoretical support of technological mechanics. Plasticity condition, description of hardening, and relationship between stresses and deformations. Vestnik mashinostroeniya. 2013. No. 4. pp. 62–70.
11. Savelev L. M. Material deformation curve approximation in strength and stability analysis. Russian Aeronautics. 2011. Vol. 54. No 3. pp. 292–297.
12. Vlasov А. V. Thermomechanical fatigue of hot stamping dies. Stal. 2016. No 9. pp. 48–52.
13. Kuwabara T. Advances In Experiments On Metal Sheets And Tubes In Support Of Constitutive Modeling And Forming Simulations. International Journal of Plasticity. 2007. Vol. 23, Iss. 3. pp. 385–419.
14. Dmitriev А. М., Vorontsov А. L. Approximation of metal hardening curves. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2002. No. 6. pp. 16–22.
15. Vorontsov А. L. On the approximation of hardening curves. Vestnik mashinostroeniya. 2002. No. 1. p. 51.
16. Таrasov V. А. Analysis methods in mechanical engineering technology. Analytical modeling of dynamic materials processing. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 1996. 185 p.
17. Chumadin А. S. Theory and calculations of sheet stamping processes (for engineers). 2nd edition. Moscow: Eksposervis "VIP". 2014. 216 p.
18. Ogar P. М., Gorokhov D. B. Relationship between the indentation strain of a spherical indenter and tensile strain. Aktualnye problemy v mashinostroenii. 2016. No. 3. pp. 479–485.
19. Baranov G. L. Infl uence of the hardening curve shape on the axial stress in the crimping section of the die when drawing a round bar. Stal. 2018. No. 3. pp. 24–27.
20. Baburin М. А., Baskakov V. D., Gerasimov N. V., Zarubina О. V., Tarasov V. А. Analysis of the shape change of blanks during drawing of hemispherical parts using intermediate deformable media. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2014. No. 7. pp. 21–24.
21. Sofyin А. S., Baskakov V. D., Tarasov V. А. Estimation of the springback value of spherical linings when calibrating for liquid compression. Nauka i obrazovanie: nauchnoe izdanie MGTU imeni N. E. Baumana. 2012. No. 10. pp. 63–76.
22. Chumadin А. S., Ershov V. I., Shemonaeva Е. S. Study of the process of forming half-torus from sheet blanks. Aviatsionnaya promyshlennost. 2013. No. 2. pp. 33–36.
23. Nasheralahkami S., Zhou W., Golovashchenko S. F. Study of Sheared Edge Formability of Ultra-High Strength DP980 Sheet Metal Blanks. Journal of Manufacturing Science and Engineering. 2019. Vol. 141, Iss. 9. 091009.
24. Cheng J., Green D. E., Golovashchenko S. F. Formability enhancement of DP600 steel sheets in electro-hydraulic die forming. Journal of Materials Processing Technology. 2017. Vol. 244. pp. 178–189.
25. Wanintradul C., Golovashchenko S. F., Gillard A. J., Smith L. M. Hemming Process with Counteraction Force to Prevent Creepage. Journal of Manufacturing Processes. 2014. Vol. 16, Iss. 3. pp. 379–390.

Language of full-text russian
Full content Buy