Journals →  Chernye Metally →  2020 →  #9 →  Back

ArticleName Oxidation state of iron in different materials and processes. Part 1. Iron in materials and slags of equilibrium processes
ArticleAuthor G. N. Elansky, D. Ameling, D. G. Elansky, G. I. Kotelnikov

Interregional Public Organization "Association of Steel Smelters" (Moscow, Russia):

G. N. Elansky, Dr. Eng., Prof., e-mail:


Steel Institute of the Union of German Metallurgists (Düsseldorf, Germany):
D. Ameling, Dr. Eng., Prof., e-mail:


National University of Science and Technology “MISiS” (Moscow, Russia):
D. G. Elansky, Cand. Eng., Associate Prof., e-mail:
G. I. Kotelnikov, Cand. Eng., Associate Prof., e-mail:


The defi nition of the oxidation degree of elements is given, the calculation of the average oxidation degree of iron in the simultaneous presence of FeO and Fe2O3 is shown. Oxidation state and iron participation in redox processes are considered. Iron can have oxidation states ranging from zero (pure iron) to +8. The most important are oxidation states 0, +2 and +3. The structure of molten slag is considered. It can simultaneously contain products of dissociation of molecular components in the form of cations and anions, non-dissociated molecules and complex associations of molecules or cations with anions (clusters, complexes, associates). Iron is a major contributor to oxygen transport in steelmaking processes. Under the infl uence of oxygen, iron is oxidized to FeO and Fe2O3, forming a Fe+2 cation and FeO2–1 anion in the slag. Аverage oxidation number of iron in ores, concentrates, wustite, in the slag of equilibrium distribution processes of phosphorus between molten iron and slags, in the slag of open-hearth furnace basic and acidic processes, in the slag BOF and EAF processes are calculated. Аverage gross formula of the iron oxide in the slag FeOх, where 0 < x ≤ 1,5 is proposed. The average oxidation number of iron in equilibrium state of distribution of phosphorus between the molten iron and slag is equal to (of 2.03 to 2.47), in exfoliated slags of quaternary system CaO – FeOn – P2O5 – SiO2 — (2.11–2.37), and in system CaO – FeOn – P2O5 – MgO – MnOn — (2.12–2.41); in homogenous slag systems in average — (2.20 – of 2.27). The average degree of oxidation of iron in slag depends on the partial pressure of oxygen and slag composition and does not depend on the concentration of iron oxide.
The authors are grateful to Prof. Dr. Klaus Koch (01.09.1936–20.05.2019, Institute of Metallurgy of the Technical University of Clausthal, Germany), Dr. Eng. L. Ya. Levkov (NPO TsNIITMASH), Dr. Eng., Prof. A. A. Kozhukhov (Stary Oskol Technological Institute) and Dr. Eng., Associate Prof. S. P Burmasov (Ural Federal University named after the first President of Russia B. N. Yeltsin) for the source materials and fruitful discussion.

keywords Iron, oxidation degree of iron, wustite, slag of equilibrium states


1. Welt: Rohstahlerzeugung. Stahl und Eisen. 2019. No. 2. S. 83.
2. Karapetyants М. Kh., Drakin S. I. General and inorganic chemistry. Moscow: Khimiya, 1981. 630 p.
3. Nekrasov B. V. General chemistry course. Moscow: Roskhimizdat, 1954. 972 p.
4. Chemical sciences and education in Russia [Electronic resource] Available at: (accessed: 11.08.2020).
5. Kiselyov Yu. А. Actual problems of oxidation states stabilization. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya. 1998. Vol. 39. No. 1. pp. 3–18.
6. Wüstite [Electronic resource] Available at: (accessed: 11.08.2020).
7. Hazen R. M., Jeanloz R. Wüstite (Fe1–xO): A review of its defect structure and physical properties. Reviews of Geophysic. 1984. Vol. 22, Iss. 1. pp. 37–46.
8. Welberry T. R., Goossens D. J., Heerdegen A. P. Local order in wüstite using a pair distribution function (PDF) approach. Mineralogical Magazine. 2014. Vol. 78, Iss. 2. pp. 373–385.
9. Fischer R. A., Campbell A. J., Shofner G. A., Lord O. T., Dera P., Prakapenka V. B. Equation of state and phase diagram of FeO. Earth and Planetary Science Letters. 2011. Vol. 304, Iss. 3-4. pp. 496–502.
10. Levin E., Robbins C. R., Mcmurdie H. F. Phase diagrams for ceramists. The American Ceramic Society, INC. USA. 1969. 625 p.
11. Slag Atlas. Translated from German by G. I. Zhmoydin, edited by S. I. Kulikov. Moscow: Metallurgiya, 1985. 208 p.
12. Yusfi n Yu. S., Leontyev L. I., Chernousov P. I. Industry and the environment. Moscow: Akademkniga, 2002. 469 p.
13. Kortmann H., Koch K., Grover B., Burghardt O., Troemel G. Influence de la gangue sur le gonfl ement des boulettes de minerai de fer. Stahl und Eisen. 1973. No. 11. S. 463–472.
14. Pecheritsa А. А., Lamukhin А. М., Morov D. V., Yarmukhametov М. R., Prosvirkin S. P. et. al. Experience in the processing of dust from gas purifiers at an EAF shop in a branch of the OJSC OMK Stal (Vyksa). Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy nformatsii. 2013. No. 5. pp. 91–94.
15. Piepenbrock R., Koch K., Troemel G. Ueber den Verlauf der Reduktion von Wuestit mit Zusetzen an Fremdoxiden. Archiv Eisenhuettenwesen. 1976. No. 3. S. 141–146.
16. Kudrin V. А., Elansky G. N., Golubkov B. N. Estimation of the slag oxidizing capacity. Stal. 1976. No. 6. pp. 504–508.
17. Zaytsev А. I., Mogutnov B. М. Liquid slags as associated solutions. Fundamental research of physical and chemistry of metal melts. Moscow : Akademkniga, 2002. pp. 228–246.
18. Sheshukov О. Yu., Nekrasov I. V., Metelkin А. А., Savelyev М. V., Shevchenko О. I. On the question of the metallurgical slags basi city. Collection of works of the XV Congress of Steel Smelters and Metal Producers (Moscow–Tula, 15–19 October 2018). Moscow, pp. 161–166.
19. Steelmaking Data Sourcebook. Revised Edition. The Japan Society for the Promotion of Science. The 19th Committee on Steelmaking. Gordon and Breach Science Publishers. New York, 1988. 325 p.
20. Grigoryan V. А., Belyanchikov L. N., Stomakhin А. Ya. Theoretical foundations of electric arc furnace processes. Moscow: Metallurgiya, 1987. 272 p.
21. Troemel G., Fritze H. W. Gleichgewichte zwischen Eisen und kalkhaltigen Phosphatschlacken FeOn – P2O5 – CaO. Archiv Eisenhuettenwesen. 1959. No. 8. S. 1–12.
22. Koch K., Fix W. Untersuchungen im Schlakensystem Cao – FeOn – P2O5 – SiO2 bei 1600 °C. Archiv Eisenhuettenwesen. 1970. No. 2. S. 1–8.
23. Troemel G., Koch K., Fix W., Ameling D. Untersuchungen im Sechsstoff-system CaO – FeOn – MgO – MnOn – P2O5 – SiO2 bei 1600 °C im Gleichgewicht mit Eisen. Archiv Eisenhuettenwesen. 1974. No. 10. S. 671–678.
24. Koch K. Die Gleichgewichte zwischen Eisenschmelzen und Schlacken des Systems CaO – FeOn – P2O5 – SiO2 bei 1600 °C: Dissertation zur Erlangung des Grades eines Doktor-Ingeniours. Technische Hochschule Clausthal, 1967.
25. Ameling D. Untersuchungen im Sechsstoff system CaO – FeOn – MgO – MnOn – P2O5 – SiO2 bei 1600 °C im Gleichgewicht mit Eisen: Dissertation zur Erlangung des Grades Doktor-Ingenieurs. Technische Hochschule Clausthal, 1971.
26. Khadhraoui S., Hack K., Jantzen T., Odenthal H.-J. Study of the State of Industrial P2O5–Containing Slags Relevant to Steelmaking Processes Based on New Thermodynamic Database Developed for CaO – FeOx – P2O5 – SiO2 – MnO – Mg) – Al2O3 Slags. Part I: Ternary and Lower Order Systems. Steel Research International. 2019. Vol. 90, Iss. 8. 1900085.


Language of full-text russian
Full content Buy