Journals →  Chernye Metally →  2020 →  #9 →  Back

Metal science and metallography
ArticleName The technique for assessment of microstructural heterogeneity across thickness of plate made of cold-resistant low-alloy steel for Arctic applications
ArticleAuthor A. A. Kazakov, D. V. Kiselev, O. V. Sych, E. I. Khlusova

Thixomet JSC (St. Petersburg, Russia):

A. A. Kazakov, Dr. Eng., Prof., Head of the Metallurgical Expertise Laboratory, e-mail:
D. V. Kiselev, Technical Director


National Research Centre "Kurchatov Institute" — Central Research Institute of Structural Materials "Prometey" (St. Petersburg, Russia):
O. V. Sych, Cand. Eng., Head of the Sector
E. I. Khlusova, Dr. Eng., Prof., Deputy Head of Scientific and Production Centre No. 3 (NPK-3), Head of the Laboratory


A technique for microstructure anisotropy assessing by the thickness of the plate steel based on the textural analysis of the image has been developed. The technique covers the assessing of anisotropy criteria at two dimensional levels: in the near and far surroundings, which characterize the elongation along the rolling direction of fine and coarse structural elements, respectively. The results of the technique application for the microstructural heterogeneity studying of ferrite-bainite steel by the thickness of 25 mm plate steel are presented. It is shown that the proposed anisotropy criteria in combination with the total volume fraction of coarse packet-block regions of lath bainite and regions of bainite without an internal developed subgrain structure adequately describe the heterogeneity of the microstructure across the thickness of plate steel and can be used for a detailed interpretation of the two-stage thermomechanical processing technology with accelerated cooling, taking into account metallurgical heredity of the slab.
E. I. Kazakova, M. V. Salynova, O. V. Pakhomova, L. S. Chigintsev, A. I. Zhitenev participated in this work.

keywords Cold-resistant heavy plate steels, microstructure anisotropy, anisotropy coefficient, technique of automatic assessment on panoramic images

1. Gusev М. А., Ilyin А. V., Larionov А. V. Certifi cation of shipbuilding materials for ships operating in the Arctic. Sudostroenie. 2014. No. 5. pp. 39–43.
2. Gorelik S. S., Dobatkin S. V., Kaputkina L. М. Recrystallization of metals and alloys. Moscow: MISiS, 2005. 430 p.
3. Rybin V. V. Large plastic deformation and fracture of metals. Moscow: Metallurgiya, 1986. 224 p.
4. Olasolo M., Uranga P., Rodriguez-Ibabe J. M., Lopez B. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb – V microalloyed steel. Materials Science and Engineering: A. 2011. Vol. 528, Iss. 6. pp. 2559–2569.
5. Miaoa C. L., Shang C. J., Zhang G. D., Subramanian S. V. Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling. Materials Science and Engineering: A. 2010. Vol. 527, Iss. 18-19. pp. 4985–4992.
6. Pereda B., Fernandez A. I., Lopez B. Effect of Moon dynamic recrystallization behavior on Nb – Mo micro-alloyed steels. ISIJ International. 2007. Vol. 47, Iss. 6. pp. 860–868.
7. Fernandez A. I., Uranga P., Lopez B., Rodrigues-Ibabe J. M. Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb – Ti Microalloyed steels. Materials Science and Engineering: A. 2001. Vol. 361. pp. 367–376.
8. Hodgson P. D., Zahiri S. H., Whale J. J. The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel. ISIJ International. 2004. Vol. 44, Iss. 7. pp. 1224–1229.
9. Dehgan-Manshadi A., Barnett M., Hodgson P. Hot deformation and recrystallization of austenitic stainless steel: Part 1. Dynamic recrystallization. Metal. Mater. Trans. 2008. Vol. 39A. pp. 1359–1370.
10. Chastukhin А. V., Ringinen D. А., Khadeev G. Е., Efron L. I. Kinetics of static recrystallization of austenite in Nb-microalloyed pipe steels. Metallurg. 2015. No. 12. pp. 33–38.
11. Chastukhin А. V., Ringinen Д. А., Efron L. I., Astafyev D. S., Golovin S. V. Development of models of austenite structure formation to improve strategies for hot rolling of pipe steels. Problemy chernoy metallurgii i materialovedeniya. 2016. No. 3. pp. 39–53.
12. Thridandapani R. R., Misra R. D. K., Mannering T., Panda D., Jansto S. The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength. Materials Science Engineering: A. 2006. Vol. 422, Iss. 1-6. pp. 285–291.
13. Hu J., Du L. X., Zang M., Yin S. J., Wang Y. G. et al. On the determining role of acicular ferrite in V-N microalloyed steel in increasing strength-toughness combination. Materials Characterization. 2016. Vol. 118. pp. 446–453.
14. Kazakov A. A., Kiselev D. Industrial application of Thixomet image analyzer for quantitative description of steel and alloys microstructure. Metallography, Microstructure, and Analysis. 2016. Vol. 5, Iss. 4. pp. 294–301.
15. Kazakov А. А., Kazakova Е. I., Kiselev D. V., Мotovilina G. D. Development of the methods for estimation of microstructural heterogeneity of tube steels. Chernye Metally. 2009. No. 12. pp. 12–15.
16 Kazakov А. А., Kisilev D. V., Pakhomova О. V. Structure as the basis of a quality system in pipe production. Zagotovitelnye proizvodstva v mashinostroenii. 2012. No. 10. pp. 40–48.
17. Kazakov A., Kiselev D., Pakhomova O. Microstructural Quantification for Pipeline Steel Structure-Property Relationships. CIS Iron and Steel Review. 2012. Vol. 7. pp. 4–12.
18. Kazakov А. А., Kisilev D. V., Kazakova Е. I., Kurochkina О. V., Khlusova Е. I et. al. Infl uence of structural anisotropy in ferrite-bainite tube strip steels after thermomechanical treatment on the level of their mechanical properties. Chernye Metally. 2010. No. 6. pp. 7–13.
19. Saltykov S. А. Stereometric metallography. 3rd revised and expanded edition. Moscow: Metallurgiya, 1970. 374 p.
20. ASTM E1268-19. Standard Practice for Assessing the Degree of Banding or Orientation of Microstructures. ASTM International. West Conshohocken, PA. 2016.
21. Otsu N. A. Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979. Vol. 9, Iss. 1. pp. 62–66.
22. Kazakov A. A., Kazakova E. I., Kiselev D. V., Kurochkina O. V. Investigation method of structure of tube steels. Patent RF No. 2449055. Applied: 18.10.2010. Published: 27.04.2012. Bulletin No. 12.
23. ND No. 2-020101-114. Rules for the classification and construction of sea-going ships. Part ХIII. Materials. St. Petersburg: Russian Maritime Register of Shipping, 2019. 241 p.

Language of full-text russian
Full content Buy