Journals →  Tsvetnye Metally →  2020 →  #10 →  Back

ArticleName From Henry Bessemer’s invention to comprehensive converter process optimization
DOI 10.17580/tsm.2020.10.11
ArticleAuthor Bazhin V. Yu., Schenk J., Konovalov G. V., Kosovtseva T. R.

Saint Petersburg Mining University, Saint Petersburg, Russia:

V. Yu. Bazhin, Head of the Industrial Automation Department, Doctor of Technical Sciences, Professor, e-mail:
G. V. Konovalov, Associate Professor at the Department of Metallurgy, Candidate of Technical Sciences
T. R. Kosovtseva, Associate Professor at the Department of Computer Science and Computer Technology, Candidate of Technical Sciences, e-mail:

Montanuniversität, Leoben, Austria:

J. Schenk, Head of Chair of Ferrous Metallurgy, Full Professor, Dipl.-Ing., Dr. Techn.


The Bessemer process enabling to produce high-quality steels was implemented at steel mills of the Urals region more than 200 years ago. At the beginning of the 20th century, the process was modified by scientists from the Mining Institute and was then adopted by copper and nickel alloy producers. The converter process became one of the key processing stages with Russian copper and nickel smelters. This paper examines certain ways to improve the tuyere air flow in a horizontal converter. The authors came up with a generic equation for calculating specific blast air pressure and discuss the use of hydrothermal and aerodynamic techniques for tuyere purging. The blast air limit was determined for a horizontal converter that is characterized with massive melt ejections. The authors demonstrate that, in spite of all the process and design improvements, the modern converter process still has three major drawbacks. They include process cycling, the gas ductwork not being completely tight, unbalanced thermal and chemical status of the vessel leading to excessive thermal and chemical loads on the tuyere zone and incomplete slag formation in zones that are farther from the tuyeres. Research work is ongoing on a novel continuous converter design which involves the use of special-design unsubmerged tuyeres. Such tuyeres produce spatially oriented high-pressure blasts which enable consistent rotation of the molten matte in a tight cylindrical vessel.

keywords Non-ferrous metals, Peirce–Smith converter, blast air supply, tuyeres, aerodynamics

1. Bessemer’s privilege to improve the steel making process. Gornyi Zhurnal. 1857. No. 2. pp. 308–312.
2. Karabasov Yu. S., Chernousov P. I., Korotchenko N. A., Golubev O. V. Metallurgy and time: Encyclopedia. In 4 volumes. Vol. 3. In the vanguard of innovation. Moscow : Izdatelskiy dom MISiS, 2011. pp. 44–46.
3. Nizhnyaya Salda. Yekaterinburg : Izdatelstvo Uralskogo universiteta, 2000. 352 p.
4. Iossa A., Laletin N. The practice of copper matte converting in a Bessemer converter using a technique proposed by G. Semennikov. Gornyi Zhurnal. 1870. No. 5. pp. 192–222.
5. Kolyasnikov K. D. The basic Bessemer process of matte converting at the Karabash plant. Zhurnal russkogo metallurgicheskogo obshchestva. 1913. No. 4. pp. 575–617.
6. Schlesinger M. E., King M. J., Sole K. C., Davenport W. G. Extractive Metallurgy of Copper. Oxford, 2011. 455 р.
7. Coleman M. E. Increasing capacity and productivity in the metals markets through pneumatic conveying and process injection technologies. International Peirce–Smith Converting Centennial. Warrendale, PA : TMS, 2009. pp. 217–230.
8. Chen S., Mansikkaviita H., Rytkonen M. Continuous improvement in Peirce–Smith converter designe Kumera’s approach. International Peirce–Smith Converting Centennial. Warrendale, PA : TMS, 2009. pp. 315–319.
9. Kawai T., Nishiwaki M., Hayashi S. Copper concentrate smelting in Peirce–Smith converters at Onahama smelter. Converter and Fire Refining Practices. Warrendale, PA : TMS, 2005. pp. 119–123.
10. Lehner T., Ishikawa O., Smith T., Floyd J. et al. The 1993 survey of worldwide copper and nickel converter practices. Converting, Fire Refining and Casting. Warrendale, PA : TMS, 1993. pp. 1–8.
11. Baraboshkin S. N. Converting copper mattes in a Bessemer converter: Learner’s guide for vocational schools and retraining courses in non-ferrous metallurgy. Moscow, Leningrad : ONTI. Glavnaya redaktsiya literatury po tsvetnoy metallurgii, 1936. 208 p.
12. L. M. Shalygin. Horizontal converter air supply unit. Certificate of Authorship USSR, No. 129820. Published: 10.12.1959.
13. Maruyama T., Saito T., Kato M. Improvements of the converter’s operation at Tamano smelter. Sulfide Smelting’98. Warrendale, PA: TMS, 1998. pp. 219–227.
14. Mori K., Nagai K., Morita K., Nakano O. Recent operation and improvement at the Sumitomo Toyo Peirce–Smith converters. International Peirce–Smith Converting Centennial. Warrendale, PA : TMS. 2009. pp. 151–160.
15. Konovalov G. V., Kosovtseva T. R., Tsybizov A. V., Amosova A. P. Studies of the Hydroaerodynamic Characteristics of a Radial-Axial Lance. Metallurgist. 2015. Vol. 59, No. 7–8. pp. 631–636.
16. Konovalov G. V., Sizyakov V. М., Kosovtseva T. R. Pyrometallurgical processing of sulfide polymetallic raw stuff in autogeneous forced modе. Journal of Industrial Pollution Control. 2017. Vol. 33, No. 1. pp. 898–904.
17. Shalygin L. M., Konovalov G. V. Heat generation and heat transfer in various autogenous metallurgical units. Tsvetnye Metally. 2003. No. 10. pp. 17–24.
18. Konovalov G. V., Kosovtseva T. R. Oxidizing smelting of sulfide melts and production of low-silicon slags. Zapiski Gornogo instituta. 2013. Vol. 202. pp. 168–170.
19. Konovalov G. V., Kosovtseva T. R. An alternative to PS converter. Zapiski Gornogo instituta. 2013. Vol. 202. pp. 288–290.
20. Sizyakov V. M., Konovalov G. V. Space-oriented unsubmerged streams as a basis of new acetylene apparatus design. Tsvetnye Metally. 2016. No. 10. pp. 14–20. DOI: 10.17580/tsm.2016.10.02.
21. Bazhin V. Yu., Aleksandrova T. A., Kotova E. L., Gorlenkov D. V. et al. Metallurgists of the Mining University and evolution of coin production. 245 years of history. Zapiski Gornogo instituta. 2018. Vol. 230. pp. 131–139.
22. Konovalov G. V., Bazhin V. Yu., Brichkin V. N., Sizyakov V. M. A tuyere for melt blasting. Patent RF, No. 167353. Published: 10.01.2017. Bulletin No. 1.

Language of full-text russian
Full content Buy