Journals →  Obogashchenie Rud →  2020 →  #5 →  Back

ArticleName Microelement composition of vein quartz of the Kuznechikhinskoe deposit (South Urals)
DOI 10.17580/or.2020.05.04
ArticleAuthor Korekina M. A., Lyutoev V. P., Shanina S. N., Shtenberg M. V.

South Urals Federal Research Center of Mineralogy and Geoecology, UB of RAS (Miass, Russia):

Korekina M. A., Researcher, Candidate of Geological and Mineralogical Sciences,
Shtenberg M. V., Researcher, Candidate of Geological and Mineralogical Sciences


Institute of Geology, Komi SC, UB of RAS (Syktyvkar, Russia):

Lutoev V. P., Leading Researcher, Candidate of Geological and Mineralogical Sciences
Shanina S. N., Senior Researcher, Candidate of Geological and Mineralogical Sciences


This paper presents the results of a quantitative analysis of impurity elements present in the structural form and composition of mineral and fluid inclusions in the quartz of the Kuznechikhinskoe deposit. The studies have been carried out using ICP–OES and FT–IR spectroscopy, electron paramagnetic resonance (EPR), and gas chromatography. It has been shown that the concentrations of mineral and fluid inclusions are low due to the deposit formation conditions, which positively affects the purity of quartz concentrates obtained. The main impurity is Al, present in the composition of mineral and fluid inclusions and in the crystal lattice of quartz itself. Spectroscopic studies allowed localizing impurities in the quartz and selecting an effective staged concentration process. The quartz samples are first crushed to the fraction of 0.1 to 0.4 mm, then subjected to electromagnetic separation, agglomeration treatment, and microwave decrepitation, and, at the final stage, undergo acid treatment in a combination of hydrofluoric and hydrochloric acids. The finishing deionized water washing and drying complete the deep concentration process to produce high-purity concentrates.

keywords Quartz, impurity elements, fluid inclusions, mineral inclusions, concentration, EPR spectroscopy, IR spectroscopy

1. Götze J., Pan Y., Müller A., Kotova E. L., Cerin D. Trace element compositions and defect structures of high-purity quartz from the Southern Ural region, Russia. Minerals. 2017. Vol. 7, No. 10. DOI: 10.3390/min7100189.
2. Vatalis K. I., Charalambides G., Benetis N. P. Market of high purity quartz innovative applications. Procedia Economics and Finance. 2015. Vol. 24. pp. 734–742.
3. Götze J., Möckel R. Quartz: deposits, mineralogy and analytics. Berlin. Heidelberg: Springer, 2012. 360 p.
4. Anas Boussaa S., Kheloufi A., Boutarek Zaourar N. Characterization of impurities present on Tihimatine (Hoggar) quartz, Algeria. Journal of African Earth Sciences. 2017. Vol. 135. pp. 213–219.
5. Audétat A., Garbe-Schönberg D., Kronz A., Pettke T., Rusk B., Donovan J. J., Lowers H. A. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards & Geoanalytical Research. 2015. Vol. 39. pp. 171–184.
6. Anfilogov V. N., Kabanova L. Ya., Igumentseva M. A., Nikandrova N. K. Geological structure and genesis of quartz veins of the Ufalei complex by the example of vein 2136. Doklady Akademii Nauk. 2016. Vol. 466, No. 4. pp. 443–446.
7. Petrovsky V. A., Silaev V. I., Sukharev A. E., Shanina S. N., Martins M., Karfunkel I. Fluid phases in carbonado and their genetic informativeness. Geokhimiya. 2008. No. 7. pp. 748–756.
8. Kreisberg V. A., Rakcheev V. P., Serykh N. M., Borisov L. A. Diagnostics of gas-liquid impurities in quartz by mass
spectrometric method. Razvedka i Okhrana Nedr. 2007. No. 10. pp. 12–18.
9. Shtenberg M. V., Igumentseva M. A., Bykov V. N. Infrared Fourier spectroscopy of water and H-defects in granular quartz of the Kuznechikhinskoe deposit (South Urals). Litosfera. 2010. No. 4. pp. 152–156.
10. Götze J., Plotze M., Graupner T., Hallbauer D. К., Bray C. J. Trace element incorporation into quartz: A combined study by ICP–MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta. 2004. Vol. 68, No. 18. pp. 3741–3759.
11. Isaev V. A. Structural impurities in quartz. Part I. Review and analysis of traditional methods of quartz purification from structural impurities. Gorny Informatsionnoanaliticheskiy Byulleten'. 2006. No. 9. pp. 11–23.
12. Dennen W. H. Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin. 1967. Vol. 78. pp. 125–130.
13. Savichev A. N., Krasilnikov P. A. Statistical characteristics of trace elements of high purity quartz of the uralian type (Ufaley quartz vein area, South Urals). Mineralogiya. 2019. Vol. 1, No. 5. pp. 46–56.
14. Toyoda S. Paramagnetic lattice defects in quartz for applications to ESR dating. Quaternary Geochronology. 2015. Vol. 30, Pt. B. pp. 498–505.
15. Lutoev V. P. Decomposition of powder ESR spectra: Ge centers in natural quartz. Applied Magnetic Resonance. 2008. Vol. 33. pp. 19–35.
16. Lyutoev V. P., Makeev A. B. Structural elementsadmixtures in sandstones quartz of the Pizhemskaya depression (Middle Timan). Litosfera. 2013. No. 4. pp. 110–120.
17. Pan Yu., Hu B. Radiation-induced defects in quartz. IV. Thermal properties and implications. Physics & Chemistry of Minerals. 2009. Vol. 36, Iss. 8. pp. 421–430.
18. Mashkovtsev R. I., Pan Y. Nature of paramagnetic defects in α-quartz: Progresses in the first decade of the 21st
century. New developments in quartz research: varieties, crystal chemistry and uses in technology. New York: Nova Publishers, 2013. pp. 65–104.
19. Rakov L. T. Mechanisms of isomorphism in quartz. Geokhimiya. 2006. No. 10. pp. 1085–1096.
20. Bray C. J., Spooner E. T. C., Thomas A. V. Fluid inclusion volatile analysis by heated crushing, on line gas chromatography: аpplications to Archean fluids. Journal of Geochemical Exploration. 1991. Vol. 42, Iss. 1. pp. 167–193.
21. Volkova M. G., Nepomnyashchikh A. I., Fedorov A. M., Makhlyanova A. M., Bryanskii N. V. Fluid inclusions in «superquartzites» of the Bural-Sardyk deposit (East Sayan). Geologiya i Geofizika. 2017. No. 9. pp. 1324–1331.
22. Gibsher N. A., Tomilenko A. А., Sazonov A. V., Bul’bak T. A., Ryabukha M. A., Sil’yanov S. A., Nekrasova N. A. Khomenko M. O., Shaparenko E. O. The Olimpiadinskoe gold deposit (Yenisei ridge): temperature, pressure, composition of ore-forming fluids, D34S in sulfides, 3He/4He of fluids, Ar–Ar age, and duration of formation. Geologiya i Geofizika. 2019. No. 9. pp. 1310–1329.
23. Mayorova T. P., Sokerina N. V. Quartz vein mineralization of one of the gold placer regions of the Lyapinsky anticlinorium (eastern slope of the Subpolar Urals). Uralskaya Mineralogicheskaya Shkola. 2018. No. 24. pp. 103–107.
24. Kaulina T. V., Avedisyan A. A., Tomilenko A. A., Ryabukha M. A., Il’chenko V. L. Fluid inclusions in quartz from uranium mineralization areas of the Litsa ore cluster (Kola Peninsula). Geologiya i Geofizika. 2017. No. 9. pp. 1332–1345.
25. Kats A. Hydrogen in alpha-quartz. Philips Research Reports. 1962. Vol. 17. pp. 201–279.
26. Aines R. D., Rossman G. R. Water in minerals? A peak in the infrared. Geophysical Research. 1984. Vol. 89, Iss. 6. pp. 4059–4071.
27. Libowitzky E., Rossman G. R. An IR absorption calibration for water in minerals. American Mineralogist. 1997. Vol. 82. pp. 1111–1115.
28. Stenina N. G. On the forms of water entering crystalline quartz. Mineralogicheskiy Zhurnal. 1987. Vol. 9, No. 5.
pp. 58–69.

Language of full-text russian
Full content Buy