Журналы →  Tsvetnye Metally →  2021 →  №7 →  Назад

METAL PROCESSING
Название Study of features of texture and structure evolution during hot rolling in a continuous group of stands of aluminum alloy 6016
DOI 10.17580/tsm.2021.07.11
Автор Aryshensky E. V., Aryshensky V. Yu., Kaurova E. S., Tribunsky A. V.
Информация об авторе

Samara University, Samara, Russia:

E. V. Aryshensky, Associate Professor, Chair for Metals Technology and Aviation Materials Science, Candidate of Technical Sciences, e-mail: ar-evgenii@yandex.ru
E. S. Kaurova, Postgraduate Student, e-mail: echitnaeva72@gmail.com
A. V. Tribunsky, Postgraduate Student

JSC Arkonik SMZ, Samara, Russia:

V. Yu. Aryshensky, Chief Distributor, Doctor of Technical Sciences

Реферат

The article presents the study results of texture and microstructure evolution during automotive 6016 aluminum alloy hot rolling in the multi-stand continuous hot rolling mill. Optical microscopy, scanning electron microscopy, X-ray structure analysis were applied for examinations. 6016 alloy is noted for specific features of structure and texture formation. The peculiarities are due to the high value of the stacking fault energy and a small amount of intermetallic particles of the second phase. The texture in the form of four incomplete pole figures {111}, {200}, {220} and {311} was investigated by the “reflection” method using a DRON-7 X-ray diffractometer in CoKα radiation. When rolling in a continuous group of stands, the coiling temperature level into a coil is 315 oC at a logarithmic deformation of 2.7 and a deformation rate in the last pass of 70 s-1 is insufficient for complete recrystallization during self-annealing. Annealing the hot rolled coil at 425 oC results in a sharp cubic texture. The amount of fine particles in alloy 6016 is very small; therefore, the main mechanism for suppressing recrystallization is an intense recovery process caused by a high stacking fault energy. The specific features are driven by high stacking fault value and low amount of the second phase intermetallic particles. The obtained data could be useful for thermomechanical treatment processes improvement, crystalline texture evolution modelling and 6ХХХ group alloys improvement.
The research was conducted on the expences of the Russian Scientific Fund's grant, the project № 21-19-00548, https://rscf.ru/project/21-19-00548/.

Ключевые слова Aluminum, crystalline texture, intermetallic particles, hot rolling, X-ray texture analysis
Библиографический список

1. Davydov V. G. et al. Alloying aluminum alloys with scandium and zirconium additives. Metal Science and Heat Treatment. 1996. Vol. 38, No. 8. pp. 347–352.
2. Zakharov V. V. About alloying of aluminum alloys with transition metals. Metal Science and Heat Treatment. 2017. Vol. 59, No. 8. pp. 67–71.
3. Kablov E. N., Antipov V. V., Klochkova Yu. Yu. Aluminium-lithium alloys of new generation and aluminium fiberglass laminates on their basis. Tsvetnye Metally. 2016. No. 8. pp. 86–91.
4. Antipov V. V., Kolobnev N. I., Khokhlatova L. B. Advancement of Al – Li alloys and of multistage modes of their heat treatment. Metal Science and Heat Treatment. 2014. Vol. 55, No. 9-10. pp. 459–465.
5. Hirsch J. Aluminium in innovative light-weight car design. Materials Transactions. 2011. Vol. 52, No. 5. pp. 818–824.
6. Belov N. A. et al. Effect of intermediate annealing on the resistivity and strength of wire from low-alloy aluminum alloys of the Al – Zr – Fe – Si system. Metal Science and Heat Treatment. 2012. Vol. 54, No. 3-4. pp. 165–170.
7. Davydov V. G., Rostova T. D., Zakharov V. V., Filatov Y. A., Yelagin V. I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Materials Science and Engineering: А. 2000. Vol. 280. pp. 30–36.
8. Hirsch J. Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24, No. 7. pp. 1995– 2002.
9. Hirsch J. Automotive trends in aluminium-the European perspective. Materials Forum. 2004. Vol. 28, No. 1. pp. 15–23.
10. Lutsey N. P. Review of technical literature and trends related to automobile mass-reduction technology: Report. Institute of Transportation Studies University of California, Davis 2010. 43 p.
11. Hirsch J. Textures in industrial processes and products. Materials Science Forum. 2011. Vol. 702. pp. 18–25.
12. Aryshenskiy E. V., Beglov E. D., Aryshenskiy V. Yu., Latushkin I. A. Rolling technology foundations of aluminum alloys with defined structure crystallography. Proizvodstvo Prokata. 2017. No. 6. pp. 3–10.
13. Aryshenskiy V. Y., Grechnikov F. V. Theory and calculations of plastic forming of anisotropic materials. Мoscow : Metallurgiya, 1990.
14. Kolobov V. G., Aryshenskiy E. V., Yashin V. V., Latushkin I. A. Determination procedure development of strength characteristic requirements for aluminum sheets and bands, taking into account anisotropy of mechanical properties with example of 5182 alloy band. Proizvodstvo Prokata. 2017. No. 1. pp. 9–12.
15. Aryshenskiy Ye. V., Guk S. V., Galiyev E. E., Drits A. M., Kawalla R. Evaluation of applicability of new aluminum alloy 1565ch in automotive industry. Deformatsiya i Razrushenie materialov. 2018. No. 9. pp. 40–46.
16. Engler O. On the Impact of Thermo-Mechanical Processing on Texture and the Resultant Anisotropy of Aluminium Sheet. Materials Science Forum. 2011. Vol. 702. pp. 427–434.
17. Engler O., Löchte L., Hirsch J. Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets. Acta Materialia. 2007. Vol. 55, No. 16. pp. 5449–5463.
18. Engler O., Miller-Jupp S. Control of second-phase particles in the Al – Mg – Mn alloy AA 5083. Journal of Alloys and Compounds. 2016. Vol. 689. pp. 998–1010.
19. Engler O., Liu Z., Kuhnke K. Impact of homogenization on particles in the Al – Mg – Mn alloy AA 5454–Experiment and simulation. Journal of Alloys and Compounds. 2013. Vol. 560. pp. 111–122.
20. Aryshenskiy V. Y. Development of a mechanism for forming a given anisotropy of properties in the process of rolling aluminum belts for deep drawing with thinning : thesis of inauguration of Dissertation … of Candidate of Technical Sciences. Samara : Samarskij ajerokosmicheskij universitet, 2002. 31 p.
21. Aryshnskii E., Kawalla, R., Сhristian, S., Aryshenskii V. Investigation of texture and structure evolution during hot rolling of 1070, 3104 and 8011 aluminum alloys in continuous mill. Metallurgia Italiana. 2017. Vol. 109, No. 3. pp. 11–21.
22. Aryshenskiy E. V., Beglov E. D., Aryshenskiy V. Yu., Pankratov M. A. Investigation of the effect of external friction during hot rolling on the texture of a 3104-aluminum alloy tape. Proizvodstvo prokata. 2017. Vol. 7. P. 14–17.
23. Wells M. A. et al. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part III. Overall model development and validation. Metallurgical and Materials Transactions: B. 1998. Vol. 29, No. 3. pp. 709–719.
24. Humphreys F. J., Hatherly M. Recrystallization and related annealing phenomena. Elsevier. 2004. 658 p.
25. EN 573-3-2013. Aluminium and aluminium alloys. Chemical composition and form of wrought products. Part 3. Chemical composition and form of products. Introduced: 01.12.2013. Moscow : Standartinform, 2013.
26. Nam A., Yashin V., Aryshenskii E., Zinoviev A. V., Kawalla R. Modelling of cooling and recrystallization kinetics during self-annealing of aluminium coils. Materials Science Forum. 2018. Vol. 918. pp. 110–116.
27. Aryshenskii E., Kawalla R., Hirsch J. Development of new fast algorithms for calculation of texture evolution during hot continuous rolling of Al – Fe alloys. Steel Research International. 2017. Vol. 88, No. 10. p. 1700053.
28. Andrianov A. V. et al. Influence of 3104 alloy microstructure on sheet performance in ironing aluminum beverage cans. Key Engineering Materials. 2016. 684 p.
29. Zener C., Hollomon J. H. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics. 1944. Vol. 15, No. 1. pp. 22–32.
30. Wells M. A. et al. Modelling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys. Microstructural evolution. Part I. Metallurgical and Materials Transactions: B. 1998. Vol. 29, No. 3. pp. 611–620.
31. Aryshenskii E. V., Aryshenskii V. Y., Grechnikova A. F., Beglov E. D. Evolution of texture and microstructure in the production of sheets and ribbons from aluminum alloy 5182 in modern rolling facilities. Metal Science and Heat Treatment. 2014. Vol. 56, No. 7-8. pp. 347–352.
32. Danilov S. V., Reznik P. L., Lobanov M. L., Golovin M. A., Loginov Yu. N. Influence of hot rolling on anisotropy of mechanical properties of aluminum alloy 6061. Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Serija: Metallurgija. 2017. Vol. 17, No. 1. P. 73–80 .
33. Enger O., Randle V. Introduction to texture analysis. CRC Press. 2010. 456 p.
34. Mao W. Formation of recrystallization cube texture in high purity facecentered cubic metal sheets. Journal of Materials Engineering and Performance. 1999. Vol. 8, No. 5. pp. 556–560.
35. Dillamore I. L., Katoh H. The mechanisms of recrystallization in cubic metals with particular reference to their orientation-dependence. Metal Science. 1974. Vol. 8, No. 1. pp. 73–83.
36. Nes E., Vatne H. E. The 40o<111> orientation relationship in recrystallisation. Zeitschrift für Metallkunde. 1996. Vol. 87. P. 448–453.

Language of full-text русский
Полный текст статьи Получить
Назад