Журналы →  CIS Iron and Steel Review →  2023 →  №1 →  Назад

Corrosion, Metal Protection and Heat Insulation
Название The role of multi-phase metal content in corrosion and premature failure mitigation of steel equipment in oil refiniers. Part 1
DOI 10.17580/cisisr.2023.01.15
Автор B. Issa, V. Yu. Bazhin, K. G. Karapetyan
Информация об авторе

Empress Catherine II St. Petersburg Mining University (St. Petersburg, Russia):

B. Issa, Post Graduate Student, Dept. of Metallurgy, e-mail: basharissashtain@gmail.combasharissa3@gmail.com
V. Yu. Bazhin, Dr. Eng., Prof., Head of Dept. of Automation of Technological Processes and Production, e-mail: bazhin-alfoil@mail.ru
K. G. Karapetyan, Dr. Eng., Associate Prof., Head of the Dept. of Chemical Technologies and Processing of Energy
Carriers, e-mail: kir64@list.ru

Реферат

The very complex nature of hydrocarbon raw materials, such as crude oil, and all kinds of reactions and mutual interactions of all its components and phases with each other and with steel equipment (base metals, alloying elements and inclusions), as well as the applied temperatures and pressures in refining processes, in addition to the technical conditions of the steel equipment and storage and transportation conditions of crude oil, all this makes it almost impossible to completely dehydrate and desalinate crude oil, which is the real cause of most of the inevitable problems. Taking into account high corrosion rates, premature failures and the growing number of accidents and emergency stops, researchers face a challenging task and a great responsibility to provide a more comprehensive understanding of corrosion, and proposing deeper corrosion mechanisms that take into account the role of multiphase metal components, which are not less important than the influence of other corrosive components.

Ключевые слова Crude oil, corrosion, steel coils, premature failure, inclusions, trace metals, nickel, vanadium, oil refinery, tubular furnace
Библиографический список

1. Davoodi S., Al-Shargabi M., Wood D. A., Rukavishnikov V. S., Minaev K. M. Experimental and field applications of nanotechnology for enhanced oil recovery purposes: A review. Fuel. 2022. Vol. 324. 124669. pp. 1-34. DOI: 10.1016/j.fuel.2022.124669
2. Al-Shargabi M., Davoodi S., Wood D. A., Rukavishnikov V. S., Minaev K. M. Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. Journal of Molecular Liquids. 2022, Vol. 352. 118725. pp. 1-36. DOI: 10.1016/j.molliq.2022.118725
3. Zgonnik P. V., Kuzhaeva A. A., Berlinskiy I. V. The study of metal corrosion resistance near weld joints when erecting building and structures composed of precast structures. Applied Sciences. 2022. No. 12 (5). 2518. pp. 1-13. DOI: 10.3390/app12052518
4. Frankel G. S., Sridhar N. Understanding localized corrosion. Materials Today. 2008. No. 11 (10). pp. 38-44. DOI: 10.1016/S1369-7021(08)70206-2
5. Li W., Li D. Y. Influence of surface morphology on corrosion and electronic behavior. Acta Materialia. 2006. Vol. 54 (2). pp. 445-452. DOI: 10.1016/j.actamat.2005.09.017
6. Kantyukov R. R., Zapevalov D. N., Vagapov R. K. Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities. Journal of Mining Institute. 2021. Vol. 250. pp. 578-586. DOI: 10.31897/PMI.2021.4.11
7. Ponomarev A. I.,Yusupov A. D. Effect of shear stress on the wall of technological pipelines at a gas condensate field on the intensity of carbon dioxide corrosion. Journal of Mining Institute. 2020. Vol. 244. p. 439-447. DOI: 10.31897/PMI.2020.4.6
8. Issa B., Bazhin V. Y., Telyakov N. M., Telyakov A. N. Increasing of corrosion resistance of welded radiant and convection coiledpipes in tubular furnaces at kinef crude oil refinery. Youth Technical Sessions Proceedings - Proceedings of the 6th Youth Forum of the World Petroleum Council - Future Leaders Forum 2019. 2019. pp. 243–249.
9. Issa B., Bazhin V. Y., Telyakov N. M., Telyakov A. N. The role of chloride, oxygen and aluminum on corrosion resistance of coiledpipes in tubular furnaces of oil refinery. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 666 (1). 012027. pp. 1-8. DOI: 10.1088/1757-899X/666/1/012027

10. Kazakov A. A., Kiselev D. V., Kur A. A., Lazutova E. B. Development of quantitative methods of assessment of structure of hypoeutectic silumins for forecasting of their mechanical properties. Tsvetnye Metally. 2014. No. 4. pp. 51-55.
11. Ånmark N., Karasev A., Jönsson P. The effect of different nonmetallic inclusions on the machinability of steels. Materials. 2015. Vol. 8 (2). pp. 751-783. DOI: 10.3390/ma8020751
12. Bazhin V. Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute. 2021. Vol. 249 (5). pp. 393–400.
13. Grigorev E., Nosov V. Improving quality control methods to test strengthening technologies: a multilevel model of acoustic pulse flow. Applied Sciences. 2022. Vol. 12 (9). 4549. pp. 1-11. DOI: 10.3390/app12094549
14. Lee Y. H., Kim G. I., Kim K. M., Ko S. J., Kim W. C., Kim J. G. Localized corrosion occurrence in low-carbon steel pipe caused by microstructural inhomogeneity. Materials. 2022. Vol. 15 (5). 1870. pp. 1-14. DOI: 10.3390/ma15051870
15. Yang Z., Kan B., li J., Su Y. Pitting initiation and propagation of x70 pipeline steel exposed to chloride-containing environments. Materials. 2017. Vol. 10 (9). 1076. pp. 1-14. DOI: 10.3390/ma10091076
16. Cao Y. X., Li G., Hou Y., Moelans N. DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al-Ti-Ca complex deoxidized steel with Ce treatment. Physica B: Condensed Matter. 2019. 558, pp. 10-19.
17. Liu C., Revilla R., Zhang D., Liu Z. Y. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corrosion Science. 2018. Vol. 138. pp. 96-104.
18. Yasinskiy A. S., Padamata S. K., Polyakov P. V., Shabanov A. V. An update on inert anodes for aluminium electrolysis. Non-ferrous Мetals. 2020. No. 1. p. 15-23.
19. Beloglazov I., Morenov V., Leusheva E. Flow modeling of highviscosity fluids in pipeline infrastructure of oil and gas enterprises. Egyptian Journal of Petroleum. 2021. Vol. 30 (4). pp. 43–51.
20. Nikolaev А. K., Zaripova N. А. Substantiation of analytical dependencies for hydraulic calculation of high-viscosity oil transportation. Journal of Mining Institute. 2021. Vol. 252. pp. 885-895. DOI: 10.31897/PMI.2021.6.10
21. Alattar A. L., Bazhin V. Y. Development properties of aluminum matrix composites reinforced by particles of boron carbide. Journal of Physics: Conference Series. 2021. Vol. 1990 (1). 012018. pp. 1-8. DOI: 10.1088/1742-6596/1990/1/012018
22. Issa B., Bazhin V. Y. Assessment of possibility of obtaining alloying components in the process of desalting of heavy hydrocarbon raw materials. Part 2. CIS Iron and Steel Review. 2021. Vol. 21. pp. 9–15.
23. Shibaeva T. V., Laurinavichyute V. K., Tsirlina G. A. Arsenkin A. M., Grigorovich K. V. The effect of microstructure and nonmetallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions. Corrosion Science. 2014. Vol. 80. pp. 299-308. DOI: 10.1016/j.corsci.2013.11.038
24. Schipachev A. M., Gorbachev S. V. Influence of Post-welding Processing on Continuous Corrosion Rate and Microstructure of Welded Joints of Steel 20 and 30KhGSA. Journal of Mining Institute. 2018. Vol. 231, pp. 307-311. DOI: 10.25515/PMI.2018.3.307
25. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. pp. 854-860. DOI: 10.31897/PMI.2021.6.7
26. Issa B., Bazhin V. Y., Aleksandrova T. A., Povarov V. G. Assessment of possibility of obtaining alloying components in the process of desalting of heavy hydrocarbon raw materials. Part 1. CIS Iron and Steel Review. 2020. Vol. 19. pp. 8–12.
27. Rehan M. A., Medvedeva A., Svensson L. E. et al. Retained Austenite Transformation during Heat Treatment of a 5 Wt Pct Cr Cold Work Tool Steel. Metall. Mater. Trans. A. 2017. Vol. 48. pp. 5233–5243. DOI: 10.1007/s11661-017-4232-5
28. Handoko W., Anurag A., Pahlevani F., Hossain R., Privat K., Sahajwalla V. Efect of selective-precipitations process on the corrosion resistance and hardness of dual-phase high-carbon steel. Scientific Reports. 2019. Vol. 9 (1). p. 1-11. DOI: 10.1038/s41598-019-52228-z
29. Ebhota W. S., Jen. T. Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. London, UK: Intech-Open. 2018. pp. 21-41. DOI: 10.5772/intechopen.73188
30. Wang Y., Cheng G., Wu W., Li Y.. Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM. Corrosion Science. 2017. Vol. 130. pp. 252-260. DOI: 10.1016/j.corsci.2017.10.029
31. Park J., Lee S. M., Kang M., Lee S. Pitting corrosion behavior in advanced high strength steels. Journal of Alloys and Compounds. 2015. Vol. 619. pp. 205–210. DOI: 10.1016/j.jallcom.2014.08.243
32. Avci R., Davis B. H., Wolfenden M., Beech I. B. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corrosion Science. 2013. Vol. 76. pp. 267-274. DOI: 10.1016/j.corsci.2013.06.049
33. Melchers R. E., Chaves I. A., Jeffrey R. A conceptual model for the interaction between carbon content and manganese sulphide inclusions in the short-term seawater corrosion of low carbon steel. Metals. 2016. Vol. 132. No. 6. pp. 1-13. DOI: 10.3390/met6060132
34. Naumova E. A., Petrov M. A., Stepanov B. A., Vasilyeva E. S. Stamping with torsion of the Al – Ca alloy workpiece with high concentration of Al4Ca. 2019. Tsvetnye metally. No. 1. p. 66-71.
35. Brichkin V. N., Fedorov A. T. Thermodynamic modeling of ionic equilibria with the participation of gibbsite in the Na2O – Al2O3 – H2O system. Tsvetnye metally. 2022. No. 3. pp. 74-81.
36. Karapetyan K. G., Dorosh I. V., Sobyanin D.O., Nafikova E.V. Application of sorbents and mycorrhizal fungi for cleaning oil contaminated land. South Siberian Scientific Bulletin. 2022. No. 4. pp. 116-122.

Полный текст статьи The role of multi-phase metal content in corrosion and premature failure mitigation of steel equipment in oil refiniers. Part 1
Назад