Журналы →  CIS Iron and Steel Review →  2023 →  №2 →  Назад

Metal Science and Metal Physics
Название Mathematical description of the lines of monovariant phase equilibria on the MnO-SiO2 phase equilibrium diagram
DOI 10.17580/cisisr.2023.02.17
Автор V. V. Tolokonnikova, S. O. Baisanov, Zh. K. Saulebek, A. S. Orlov
Информация об авторе

Chemical and Metallurgical Institute named after Zh. Abishev (Karaganda, Kazakhstan)

V. V. Tolokonnikova, Cand. Chem., Chief Researcher, "Metallurgical melts" laboratory, e-mail: tolokon-splav@mail.ru
S. O. Baisanov, Dr. Eng., Prof., Director, Head of the "Metallurgical processes" laboratory, e-mail: splav_sailaubai2021@mail.ru
Zh. K. Saulebek, Master Student, 1st Category Engineer, e-mail: zhalgas.saulebek@bk.ru
A. S. Orlov, Dr. Eng., Senior Researcher of the Bor laboratory, e-mail: wolftailer@mail.ru

Реферат

When analyzing a number of phase equilibrium diagrams of various types of systems, the regular relationship was found during the formation of phase crystallization fields in the form of a correlation dependence of the osmotic coefficient of a crystallizing component on the ratio of its activity in the liquid and solid phases. The Bjerrum-Guggenheim osmotic coefficient serves as a measure of the deviation of the energy properties of a real system from the ideal one described by the Schroeder-Le Chatelier equation. Mathematical expressions for the liquidus and solidus lines are obtained in the form of semi-empirical dependences on a single analytical basis, which make it possible to calculate the temperature dependence of the composition. Thus, a theoretically substantiated method for the mathematical description of the lines of monovariant phase equilibria has been developed, based on the regularities of the behavior of components in the melt. Mathematical expressions represent the crystallization fields of the phases of the MnO-SiO2 system for the corresponding components and compounds using the Schroeder-Le Chatelier equation and the correlation dependence of the osmotic coefficient Ф', experimental and calculated data of the Bjerrum-Guggenheim osmotic coefficient (Фi) are calculated. The type of variation in the Bjerrum-Guggenheim osmotic coefficient depends on the intermolecular interaction of the components in the melt. If only van der Waals forces of interaction between the components in the melt prevail, then a correlation dependence is observed. When groups from the initial compounds are formed in the melt, or processes of dissociation or, conversely, association occur, the osmotic coefficient is described by a curvilinear dependence. The paper presents mathematical expressions for the fields of crystallization of phases of the MnO-SiO2 system in the form of semi-empirical dependencies. The nature of the change in the Bjerrum-Guggenheim osmotic coefficient of the crystallizing component depending on the ratio of its activity in the liquid and solid phases is shown.

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09259157).

Ключевые слова Manganese, silicium, Bjerrum-Guggenheim coefficient, phases, crystallization, activity, phase equilibrium diagram, mathematical model
Библиографический список

1. Baisanov S., Tolokonnikova V. V. Development of the fundamental grounds of the liquid state theory for binary systems from the point of view of heterogeneous phase equilibriums: A monograph. Karaganda: «Glasir». 2017. 188 p.
2. Glazov V. M., Pavlova L. M. Chemical thermodynamics and phase equilibriums. Moscow: Metallurgiya. 1981. 336 p.
3. Zakharov M. A. Calculation of the main types of phase equilibrium diagrams for binary solutions within the frameqork of generalized lattice model. Vestnik Novgorodskogo gosudarstvennogo universiteta. 2016. No. 7 (98). pp. 22-26.
4. Shakhnazarov K. Yu. Indicators of intermediate phases in the systems Al-Si, Fe-C and Al-Cu. Vestnik MGTU im. G. I. Nosova. 2016. Vol. 14. No. 3. pp. 71-77.
5. Voronin G. F. New opportunities for thermodynamic calculation and building of phase equilibrium diagrams in heterogeneous systems. Zhurnal fizicheskoy khimii. 2003. Vol. 77. No. 10. pp. 1874-1883.
6. Moshchenskaya E. Yu., Slepushkin V. V. The method of liquidus lines building in binary eutectic systems. Zhurnal neorganicheskoy khimii. 2015. Vol. 60. No. 1. pp. 78-84.
7. Tolokonnikovа V., Baisanov S., Narikbayeva G., Korsukova I. Assessment of dissociation rate of FeCr2O4 using the Bjerrum-Guggenheim coefficient. Metalurgija. 2021. Vol. 60. No. 3-4. pp. 303-305.
8. Tolokonnikova V. V., Baisanov S.O., Yerekeyeva G.S., Narikbayeva G.I. Regularities of phase equilibria based on the Bjerrum-Guggenheim concept for the Fe-Al binary system. CIS Iron & Steel Review. 2022. Vol. 24. pp. 79-83.
9. Baisanov S., Tolokonnikova V., Narikbayeva G., Korsukova I., Mukhambetgaliyev E. Estimation of dissociation degree of congruently melting compounds through osmotic coefficient of Bjerrum-Guggenheim. Metalurgija. 2020. Vol. 59. Iss. 3. pp. 343-346.
10. Tolokonnikova V. V., Baisanov S., Yerekeyeva G. S., Narikbayeva G. I., Korsukova I. Ya. Evaluation of the Degree of Dissociation of a Congruent Compound Fe2Ti across the Bjerrum–Guggenheim Coefficient. Metals. 2022. Vol. 12. No. 12. p. 2132.
11. Kurnakov N. S. Introduction in physical-chemical analysis. 3rd edition. Leningrad: ONTI. 1936. 194 p.
12. Kurnakov N. S. Selected works. Vol. 1.Мoscow: AN SSSR. 1961. 635 p.
13. Baisanov S.O., Tolokonnikova V. V., Yerekeyeva G.S., Narikbayeva G.I., Korsukova I. Ya. Thermodynamic-diagram analysis of the Fe-Si-Al-Mn system with the construction of diagrams of phase relations. Metalurgija. 2022. Vol. 61. No. 3-4. pp. 828-830.
14. In-Ho Jung, Youn-Bae Kang, Decterov S. A. Thermodynamic evaluation and optimization of the MnO-Al2O3 and MnO·Al2O3-SiO2 systems and applications to inclusion engineering. Metallurgical and Materials Transactions B. 2004. Vol. 35b. Аpril. pp. 259-268.
15. Sokolov V. V., Filatova I. Yu., Korolkov I. V., Danilovich V. S. et al. Influence of MnO2 on interaction between СаО and Al2O3. Neorganicheskie materialy. 2012. Vol. 48. No. 3. pp. 279-284.
16. Akberdin A., Kim A. S., Orlov A. S., Sultangaziyev R. B., Makasheva A. M. Mathematical models of viscosity diagrams and crystallization temperatures of melts of the CaO-SiO2-Al2O3-B2O3 system. Metalurgija. 2023. Vol. 62. No. 1. pp. 49-52.
17. Kasenov B. K., Kasenova Sh. B., Sagintaeva Zh. I., Kuanyshbekov E. E., Bekturganov Zh. S., Zeinidenov A. K. Electrophysical properties of new nanostructured copper-zinc manganite of lanthanum and magnesium. Eurasian Physical Technical Journal. 2022. No. 2 (40). pp. 42-47.
18. Krestovnikov A. M., Vladimirov L. P., Gulyanitskiy V. S., Fisher A. Ya. Reference book for calculation of equilibriums of metallurgical reactions. Moscow: GNTI Literatura po chernoy i tsvetnoy metallurgii. 1968. 416 p.
19. Ruzinov L. P., Gulyanitskiy V. S. Equilibrium transformations of metallurgical reactions. Moscow: Metallurgiya. 1975. 417 p.
20. Makasheva A. M., Malyshev V. P. Cluster–Associate Model for the Viscosity of Sodium Fluoride in Comparison with the Frenkel Model. Russian Metallurgy (Metally). 2021. No. 2. pp. 176-180. DOI: 10.1134/S0036029521020154
21. Makhambetov Y., Abdrashit A., Kuatbay Y., Yerzhanov A., Issengaliyeva G., Angsapov A. Research of microstructure and phase composition of a new complex alloy–alumosilicomanganese (Al-Si-Mn). Metalurgija. 2022. Vol. 61 (3-4). pp. 804-806.
22. Baisanov S., Tolokonnikova V. V., Narikbayeva G. I. Korsukova I. Ya. Thermodynamic substantiation of compositions of silicon aluminium alloys with increased aluminium content in Fe-Si-Al system. Complеx Use of Mineral Resources. 2022. Vol. 321. No. 2. pp. 31–37.
23. Hansen T. M., Khud Skou Cordua, Mosegaard K. Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling. Computational Geosciences. 2012. Vol. 16 (3). pр. 593–611.
24. Lucena J., Costa Laranjeiras C., Novaes J. R. Chiappin Gibbs' rational reconstruction of thermodynamics according to the heuristic tradition of Descartes' analytical method. History of Physics and Related Sciences. Revista Brasileira de Ensino de Física. 2019. Vol. 41 (1). pp. 10-25.
25. Nikolaidis I. K., Poursaeidesfahani A., Csaszar Z., Ramdin M., Vlugt Thijs J. H., Economou I. G., Moultos O. A. Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state. AIChE Journal. 2019. Vol. 65. No. 2. pp. 792-803.
26. Kapsalamova F. R., Kenzhaliyev B. K., Mironov V. G., Krasikov S. A. Structural and Phase Transformations in Wear Resistant Fe-Ni-Cr-Cu-Si-B-C Coatings. Journal of the Balkan Tribological Association. 2019. Vol. 25. No. 1. pp. 95-103.

Полный текст статьи Mathematical description of the lines of monovariant phase equilibria on the MnO-SiO2 phase equilibrium diagram
Назад