Журналы →  Горный журнал →  2024 →  №2 →  Назад

ОБОРУДОВАНИЕ И МАТЕРИАЛЫ
Название Обоснование оптимальной периодичности проведения капитального ремонта шахтных насосов
DOI 10.17580/gzh.2024.02.10
Автор Овчинников Н. П., Зырянов И. В.
Информация об авторе

Северо-Восточный федеральный университет им. М. К. Аммосова, Якутск, Россия

Овчинников Н. П., директор Горного института, канд. техн. наук, ovchinnlar1986@mail.ru
Зырянов И. В., зав. кафедрой, проф., д-р техн. наук

Реферат

Показано, что концентрация твердых частиц в перекачиваемой жидкости существенным образом влияет на эффективность работы насосного оборудования. Для определения оптимальной наработки насоса до капитального ремонта необходим показатель, учитывающий количество перекаченных вместе с шахтными водами твердых частиц. За основу расчета оптимальной периодичности проведения капитального ремонта шахтных насосов предложено использовать их минимальную рабочую производительность. Разработанная методика апробирована на примере насосного оборудования главной водоотливной установки рудника «Удачный» АК «АЛРОСА».

Ключевые слова Кимберлитовый рудник, главная водоотливная установка, секционный насос, шахтные воды, капитальный ремонт, периодичность его проведения, удельные эксплуатационные затраты, производительность
Библиографический список

1. Ivanov V. A., Feshchenko A. A. Peculiar properties of the equipment maintenance and repair approaches in continuous production. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2018. Vol. 20, No. 3. pp. 82–89.
2. Aliev N. A., Ponomarenko M. V., Vorozhbitsky A. S., Sidenko V. E. Technological framework for increasing endurance of centrifugal multistage sectional pumps. Progressivnye tekhnologii i sistemy mashinostroeniya. 2012. No. 1(43). pp. 8–17.
3. Palamarchuk N. V. Selecting wear-resistant materials for manufacture of mine pump parts. Ugol Ukrainy. 2001. No. 11-12. pp. 62–64.
4. Dolganov A. V. Enhancing efficiency of water-removal plants at copper-bearing pyrite mines : Theses of Dissertation of Сandidate of Engineering Sciences. Yekaterinburg, 2012. 20 p.
5. Dolganov A. V., Timukhin S. A. Hydroabrasive wear of mine water-removal pumps. Moscow : Akademiya Estestvoznaniya, 2016. 180 p.
6. MSC 40-120…660 pumps by Link Product LLC, 2012. Available at: http://www.linkprodukt.ru/archives/297 (accessed: 25.05.2023).
7. Fakher S., Khlaifat A., Enamul Hossain M., Nameer H. Rigorous review of electrical submersible pump failure mechanisms and their mitigation measures. Journal of Petroleum Exploration and Production Technology. 2021. Vol. 11, Iss. 10. pp. 3799–3814.
8. Zhengjing Shen, Wuli Chu, Xiangjun Li, Wei Dong. Sediment erosion in the impeller of a double-suction centrifugal pump – A case study of the Jingtai Yellow River Irrigation Project, China. Wear. 2019. Vol. 422-423. pp. 269–279.
9. Serrano R. O. P., Santos L. P., Viana E. M. de F., Pinto M. A., Martinez C. B. Case study:Effects of sediment concentration on the wear of fluvial water pump impellers on Brazil’s Acre River. Wear. 2018. Vol. 408-409. pp. 131–137.
10. Stan M. On the durability of centrifugal pumps. Fiability and Durability. 2018. No. 1. pp. 193–198.
11. Shishlyannikov D., Zverev V., Ivanchenko A., Zvonarev I. Increasing the time between failures of electric submersible pumps for oil production with high content of mechanical impurities. Applied Sciences. 2022. Vol. 12, Iss. 1. ID 64.
12. Ostrovskiy V. G., Peshcherenko S. N. Rate of hydroabrasive wear in inter-stage seals of oil pumps. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo. 2012. Vol. 11, No. 5. pp. 70–75.
13. Ponomarenko M. V., Aliev N. A., Kononenko A. P. Removal of slime from underground water collectors. Fluid Mechanics : IV International Students’ Conference Proceedings. Donetsk : DonNTU, 2005. pp. 146–149.
14. Gorelkin I. M. Development and justification methods to enhance energy efficiency of pumping equipment of mine water-drainage systems : Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2014. 197 p.
15. Ovchinnikov N. P. Justification of vertical split casing pump delivery at withdrawal for basic repair. GIAB. 2022. No. 7. pp. 79–90.
16. Palamarchuk T. N., Timonin Yu. V. Method of defining optimal operation time of mining centrifugal pump. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2017. No. 4. pp. 220–227.
17. Matvienko A. V., Tomilova B. I., Fokanova M. I. Calculation of joint operation of pumps at their parallel connection. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2019. No. 12. pp. 271–273.
18. Velikanov N. L., Naumov V. A., Koryagin S. I. Characteristics of high performance parallel connected sewage pumps. Tekhniko-tekhnologicheskie problemy servisa. 2019. No. 4(50). pp. 13–16.
19. Razumnyi Yu. T., Rukhlova N. Yu., Rukhlov A. V. Energy efficiency of main water-removal facilities in coal mines. Dnepropetrovsk : Natsionalnyi gornyi universitet, 2016. 109 p.
20. Ovchinnikov N. P. Assessment of the degree of in uence of the solid phase of mine wateron the durability of the hydraulic foot assembly of the sectional pump of the main drainage plant of the Udachny mine. Ustoychivoe razvitie gornykh territoriy. 2022. Vol. 14, No. 3(53). pp. 494–500.
21. Ovchinnikov N. P. Assessment of mine water solid phase impact on section pumps performance in the development of kimberlite ores. Gornye nauki i tekhnologii. 2022. No. 7(2). pp. 150–160.

Language of full-text русский
Полный текст статьи Получить
Назад