Журналы →  Materialy Elektronnoi Tekhniki →  2013 →  №3 →  Назад

MATERIALS SCIENCE AND TECHNOLOGY. SEMICONDUCTORS
Название Possibility of Growing Bulk Si—Ge Crystals Using Axial Heat Flow Method near the Crystallization Front
Автор M.A. Gonik, A. Cröll
Информация об авторе

Termo Heat Engineering Research Center, Foton Materials Science Center:

M.A. Gonik

 

Crystallography, Institute of Geosciences of Albert-Ludwigs-Universität:

A. Cröll

Реферат

A technique for crucibleless growth of single−crystal silicon and its alloys with germanium is developed. For this purpose, the setup of floating zone method was used, which was equipped with additional so−called AHP heater. The heater forms around itself a melt zone that is suspended between the growing crystal, the feeding rod and correspondingly the bottom and the top surfaces of the AHP heater by forces of surface tension. To protect the graphite casing of the heater against the aggressive action of molten silicon, the casing surface was coated with SiC having a special nano−crystalline structure. The system of automation control of the AHP crystallization mode is described. It allows controlling the thermal field near the growing crystal with an accuracy of about 0.05−0.1 K. Numerical computations of heat and mass transfer during the solidification of SixGe1−x alloy with a 2% Si content, as well as shaping of the free Si−Ge melt surface during the crystal pulling were performed. Uniform bulk crystals were obtained. The range of the highest melt layer at which the shaping process remains stable was found to be 10−20 mm. The grown As−doped Si single crystals showed to have strong twining directly caused by presence of the SiC inclusions revealed in the crystal bulk. The possibility to achieve a convex and nearly flat shape of the interface by means of the AHP heater was proved. The layered mechanism of Si crystallization was found to be present during crystal growth on a seed in the [111] direction, with the faceted area under certain conditions occupying almost the entire crystal cross section.

Ключевые слова Floating zone device and method, in−melt heater, silicon, faceted growth, linear and point defects
Библиографический список

1. Paul, D. J. Silicon−germanium strained layer materials in microelectronics // D. J. Paul / Adv. Mater. − 1999. − V. 11, N 3. − P. 191—204.
2. Nakajima, K. Growth of Ge−rich SixGe1−x single crystal with uniform composition (x = 0.02) on a compositionally graded crystal for use as GaAs solar cells // K. Nakajima, S. Kodama, S. Miyashita, G. Sazaki, S. Hiyamizu / J. Crystal Growth. − 1999. − V. 205 − P. 270.
3. Abrosimov, N. V. Czochralski growth of Si− and Ge−rich SiGe single crystals / N. V. Abrosimov, S. N. Rossolenko, W. Thieme, A. Gerhardt, W. Schröder // J. Crystal Growth − 1997. − V. 174. − P. 182—186.
4. Dold, P. Growth and characterization of Ge1−xSix (x < 10 at %) single crystals // P. Dold, A. Barz, S. Recha, K. Pressel, M. Franz, K. W. Benz / J. Crystal Growth. − 1998. − V. 192. − P. 125—135.
5. Ostrogorsky, A. G. Numerical simulation of single crystal growth by submerged heater method / A. G. Ostrogorsky // J. Crystal Growth. − 1990. − V. 104, Iss. 2. − P. 233—238.
6. Golyshev, V. D. A temperature field investigation in case of crystal growth from the melt with a plane interface on exact determination thermal conditions / V. D. Golyshev, M. A. Gonik // Cryst. Prop. and Preparation − 1991. − V. 36−38. − P. 623—630.
7. Marin, C. Growth of Ga−doped Ge0.98Si0.02 by vertical Bridgman with a baffle / C. Marin, A. G. Ostrogorsky // J. Crystal Growth − 2000. − V. 211, Iss. 1−4. − P. 378—383.
8. Croell, A. Detached Bridgman Growth of Germanium−Silicon crystals under microgravity / A. Croell, A. Mitric, A. Senchenkov / Abstracts in ICASP−2. − Seggau (Austria), 2008.
9. Golyshev, V. D. Problems of Bi4Ge3O12 and Li2B4O7 single crystal growth by crucibleless variant of AHP method / V. D. Golyshev, M. A. Gonik, V. B. Tsvetovsky // J. Cryst. Growth. − 1999. − V. 198/199. − P. 501—506.
10. Filonov, K. N. Osobennosti svoistv nanostrukturirovannyh karbidokremnievyh plenok i pokrytii, poluchennyh novym sposobom / K. N. Filonov, V. N. Kurlov, N. V. Klassen, E. A. Kudrenko, E. A. Shteinman // Izv. RAN. ser. fiz. − 2009. − T. 73, N 10. − P. 1457— 1459.
11. Gonik, M. M. Avtomaticheskaya sistema upravleniya ustanovkoi rosta kristallov na baze tehnologii National Instruments / M. M. Gonik, M. A. Gonik, V. B. Cvetovskii, V. V. Lobachev // Tr. konf. «Obrazovatel’nye, nauchnye i inzhenernye prilozheniya v srede Lab-View i tehnologii National Instruments». − M., 2005. − P. 287—290.
12. Gonik, M. M. Design of control system for growing crystals with desired properties / M .M. Gonik, V. I. Boevkin, A. V. Lomokhova, M. A. Gonik // 3rd International Conference on Physics and Control (PhysCon 2007). − Potsdam, (Germany), 2007. − http://lib.physcon.ru/?item=1176
13. Gonik, M. A. Kontrol’ za formoi meniska rasplava pri upravlenii rostom kristallov bestigel’nym OTF metodom / M. A. Gonik, M. M. Gonik, T. V. Nizkaya // XVIII Peterburgskie chteniya po probleme prochnosti i rosta kristallov (metodom Stepanova). − S.−Pb., 2008. − P. 83—86.
14. Gonik, M. A. Development of a model for on−line control of crystal growth by the AHP method / M. A. Gonik, A. V. Lomokhova, M. M. Gonik, A. T. Kuliev, A. D. Smirnov // J. Cryst. Growth. − 2007. − V. 303, Iss. 1. − P. 180—186.
15. Gonik, M. A. Upravlenie formoi fronta kristallizacii po modeli / M. A. Gonik, M. M. Gonik, D. Tsiulyanu // Tez. dokl. XIV Nacional’noi konferencii po rostu kristallov. − M., 2010. − P. 98.
16. Yuferev, V. S. Kapillyarnoe formoobrazovanie kristallov, vytyagivaemyh iz rasplava bestigel’nym OTF metodom / V. S. Yuferev / Kristallografiya. − 2008. − T. 53. − P. 1214—1220.
17. von Ammon, W. Application of magnetic fields in industrial growth of silicon single crystals / W. von Ammon, Yu. Gelfgat, L. Gorbunov, A. Mühlbauer, A. Muiznieks, Y. Makarov, J. Virbulis, G. Müller // The 15th Riga and 6th PAMIR Conf. on Fundamental and Applied MHD. − Riga, 2005. − P. 41—54.

Language of full-text русский
Полный текст статьи Получить
Назад