Журналы →  Tsvetnye Metally →  2015 →  №8 →  Назад

COMPOZITES AND MULTIPURPOSE COATING
Название Electrochemical properties of oxide coatings on AMG3 (АМГ3) aluminium alloy, treated with hydrophobic agent solution
DOI 10.17580/tsm.2015.08.07
Автор Gnedenkov S. V., Egorkin V. S., Sinebryukhov S. L., Vyalyy I. E.
Информация об авторе

Institute of Chemistry of Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia:

S. V. Gnedenkov, Deputy Director, Head of Department of Electrochemical Systems and Surface Modification Processes
V. S. Egorkin, Senior Researcher of Nonstationary Surface Processes Laboratory, e-mail: egorkin@ich.dvo.ru
S. L. Sinebryukhov, Head of Nonstationary Surface Processes Laboratory
I. E. Vyaliy, Post-Graduate Student (Nonstationary Surface Processes Laboratory)

Реферат

Aluminum alloy was preliminary subjected to plasma electrolytic oxidation (PEO) and additional treatment (either in ethanol solution or under UV-radiation in the presence of ozone plasma) with subsequent deposition of hydrophobic agent (methoxy-{3-[(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoroctyl)oxy]propyl}-silane solution in decane). Properties of hydrophobic layers on this alloy were researched, and methods of their formation were developed. Plasma electrolytic oxidation of AMg3 (АМг3) samples was carried out in tartrate-containing electrolyte in unipolar polarization mode with 50% polarizing signal duty cycle. Electrochemical properties of obtained coatings were studied using electrochemical impedance spectroscopy and potentiodynamic polarization in 3% NaCl solution. It was found, that the formed composite layers possess hydrophobicity (contact angle is higher than 157o) and high anticorrosion properties (impedance modulus (|Z|f = 0,01 Hz) ranges from 9,2·109 to 3,4·1010 Оhm·cm2) in comparison with untreated PEO-coating (35,9±2,9o; |Z|f = 0,01 Hz = 1,4·108 Оhm·cm2) and aluminium alloy (|Z|f = 0,01 Hz = 2,9·104 Оhm·cm2). Maximum values of contact angles (up to 160,1o) and minimum values of corrosion current density (1,9·10–12 A/cm2) belong to the layers, formed by precipitation of hydrophobic agent from solution on the surface of PEO-coating, additionally treated with ethyl alcohol.
This work was carried out with the support of Russian Scintific fund (№ 14-33-00009) and the Government of Russian Federation (Federal agency of scientific organizations).

Ключевые слова Hydrophobic coatings, plasma electrolytic oxidation, wettability, contact angle, electrochemical impedance spectroscopy, aluminium alloy, corrosion, potentiodynamic polarization
Библиографический список

1. Gnedenkov S. V., Sinebryukhov S. L., Mashtalyar D. V., Egorkin V. S., Sidorova M. V., Gnedenkov A. S. Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science. 2014. Vol. 85. pp. 52–59.
2. Sinebryukhov S. L., Sidorova M. V., Egorkin V. S., Nedozorov P. M., Ustinov A. Yu., Volkova E. F., Gnedenkov S. V. Protective Oxide Coatings on Mg – Mn – Ce, Mg – Zn – Zr, Mg – Al – Zn – Mn, Mg – Zn – Zr – Y and Mg – Zr – Nd Magnesium-Based Alloys. Protection of Metals and Physical Chemistry of Surfaces. 2012. Vol. 48, No. 6. pp. 678–687.
3. Rudnev V. S., Yarovaya T. P., Nedozorov P. M., Ustinov A. Yu., Tyrina L. M., Malyshev I. V., Kuryavyi V. G., Egorkin V. S., Sinebryukhov S. L., Gneden kov S. V. Obtaining ZrO2 + CeOx + TiO2 /Ti Compositions by Plasma Electrolytic Oxidation of Titanium and Investigating Their Properties. Protection of Metals and Physical Chemistry of Surfaces. 2011. Vol. 47, No. 5. pp. 621–628.
4. Gnedenkov S. V., Sinebryukhov S. L., Zavidnaya A. G., Egorkin V.S ., Puz A. V., Mashtalyar D. V., Sergienko V. I, Yerokhin A. L., Matthews A. Composite Hydroxyapatite-PTFE Coatings on Mg – Mn – Ce Alloy for Resorbable Implant Applications via a Plasma Electrolytic Oxidation-based Route. Journal of the Taiwan Institute of Chemical Engineers. 2014. Vol. 45, Iss. 6. pp. 3104–3109.
5. Gnedenkov S. V., Sinebryukhov S. L., Sergienko V. I. Electrochemical Impedance Simulation of a Metal Oxide Heterostructure. Electrolyte Interface : A Review. Russian Journal of Electrochemistry. 2006. Vol. 42, No. 3. pp. 197–211.
6. Barkhudarov P. M., Shah P. B., Watkins E. B., Doshi D. A., Brinker C. J., Majewski J. Corrosion inhibition using superhydrophobic films. Corrosion Science. 2008. Vol. 50. pp. 897–902.
7. Emelyanenko A. M., Boinovich L. B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles. Instruments and Experimental Techniques. 2002. Vol. 45. pp. 44–49.
8. Gnedenkov S. V., Egorkin V. S., Sinebryukhov S. L., Vyaliy I. E., Pashinin A. S., Emelyanenko A. M., Boinovich L. B. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg – Mn – Ce magnesium alloy. Surface and Coatings Technology. 2013. Vol. 232. pp. 240–246.

9. Ishizaki T., Hieda J., Saito N., Saito N., Takai O. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta. 2010. Vol. 55. pp. 7094–7101.
10. Ishizaki T., Okido M., Masuda Y., Saito N., Sakamoto M. Corrosion resistant performances of alkanoic and phosphonic acids derived selfassembled monolayers on magnesium alloy AZ31 by vapor-phase method. Langmuir. 2011. Vol. 27. pp. 6009–6017.
11. Liu T., Chen S., Cheng S., Tian J., Chang X., Yin Y. Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochimica Acta. 2007. Vol. 52. pp. 8003–8007.
12. Liu H., Szunerits S., Xu W., Boukherroub R. Preparation of superhydrophobic coatings on zinc as effective corrosion barriers. ACS Applied Materials & Interfaces. 2009. Vol. 1. pp. 1150–1153.
13. Ou J. F., Hu W. H., Xue M. S., Wang F. J., Li W. One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys. ACS Applied Materials & Interfaces. 2013. Vol. 5. pp. 9867–9871.
14. Ou J. F., Hu W. H., Xue M. S., Wang F. J., Li W. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection. ACS Applied Materials & Interfaces. 2013. Vol. 5. pp. 3101–3107.
15. Shang Q. Q., Wang M. Y., Liu H., Gao L. J., Xiao G. M. Facile fabrication of water repellent coatings from vinyl functionalized SiO2 spheres. Journal of Coatings Technology and Research. 2013. Vol. 10. pp. 465–473.
16. Gnedenkov S. V., Sinebryukhov S. L., Egorkin V. S., Mashtalyar D. V., Emelyanenko A. M., Boinovich L. B. Electrochemical properties of the superhydrophobic coatings on metals and alloys. Journal of the Taiwan Institute of Chemical Engineers. 2014. Vol. 85, No. 6. pp. 3075–3080.
17. Gnedenkov S. V., Sinebryukhov S. L., Sergienko V. I. Kompozitsionnye mnogofunktsionalnye pokrytiya na metallakh i splavakh, formiruemye plazmennym elektroliticheskim oksidirovaniem (Composite multifunctional coatings on metals and alloys, formed by plasma electrolytic oxidation). Vladivostok : Dalnauka, 2013. 460 p.
18. She Z. X., Li Q., Wang Z. W., Li L. Q., Chen F. A., Zhou J. C. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chemical Engineering Journal. 2013. Vol. 228. pp. 415–424.
19. Song J. L., Lu Y., Huang S., Liu X., Wu L. B., Xu W. J. A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces. Applied Surface Science. 2013. Vol. 266. pp. 445–450.
20. Qiu R., Zhang D., Wang P. Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition. Corrosion Science. 2013. Vol. 66. pp. 350–359.
21. Song J. L., Xu W. J., Liu X., Lu Y., Wei Z. F., Wu L. B. Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chemical Engineering Journal. 2012. Vol. 211/212. pp. 143–152.
22. Tuberquia J. C., Nizamidin N., Harl R. R., Albert J., Hunter J., Rogers B. R. et al. Surface-initiated polymerization of superhydrophobic polymethylene. Journal of the American Chemical Society. 2010. Vol. 132. pp. 5725–5734.
23. Yu D. Y., Tian J. T., Dai J. H., Wang X. Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater. Electrochimica Acta. 2013. Vol. 97. pp. 409–419.
24. Yu S. R., Liu J. A., Diao W., Li W. Preparation of a bionic microtexture on X52 pipeline steels and its superhydrophobic behavior. Journal of Alloys and Compounds. 2014. Vol. 585. pp. 689–695.
25. Zhou C. L., Lu X., Xin Z., Liu J. Corrosion resistance of novel silanefunctional polybenzoxazine coating on steel. Corrosion Science. 2013. Vol. 70. pp. 145–151.
26. Zhou C. L., Lu X., Xin Z., Liu J., Zhang Y. F. Hydrophobic benzoxazinecured epoxy coatings for corrosion protection. Progress in Organic Coatings. 2013. Vol. 76. pp. 1178–1183.
27. Zhu L., Jin Y. A novel method to fabricate water-soluble hydrophobic agent and super-hydrophobic film on pretreated metals. Applied Surface Science. 2007. Vol. 253. pp. 3432–3439.

Language of full-text русский
Полный текст статьи Получить
Назад