Journals →  Tsvetnye Metally →  2015 →  #10 →  Back

ArticleName Formation of the composite protective calcium-phosphate coatings on resorbable Mg-alloys
DOI 10.17580/tsm.2015.10.14
ArticleAuthor Gnedenkov S. V., Sinebryukhov S. L., Puz A. V., Mashtalyar D. V.

Institute of Chemistry of Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia:

S. V. Gnedenkov, Professor, Deputy Director for Science, Head of Department of Electrochemical Systems and Surface Modification Processes
S. L. Sinebryukhov, Assistant Professor, Head of Laboratory of Nonsteady Surface Processes
A. V. Puz, Head of Laboratory of Composite Biomedical Purpose Coatings, e-mail:
D. V. Mashtalyar, Senior Researcher (Laboratory of Composite Biomedical Purpose Coatings)


The calcium phosphate coatings consisting of magnesium oxide and hydroxyapatite, accelerating osteogenesis, were obtained by plasma electrolytic oxidation (PEO) on the surface of the magnesium alloys (Mg – Mn – Ce, Mg – Zn – Zr systems). Phase and elemental composition, morphology and corrosion resistance of the coatings were investigated in this work. The combination of physicochemical methods was used for the definition that sealing up of PEO-coating pores with superdispersed polytetrafluoroethylene significantly decreases the defectiveness of the PEO-layer and increases the corrosion resistance of the treated Mg alloys. Polarization resistance of the MA14 and MA20 magnesium alloys with composite coatings in Hank’s solution, at the temperature of 37 °C was increased by 3–4 orders of magnitude in comparison with uncoated materials. The composite coating on the surface of MA8 Mg alloy provides the maximal increasing of the protective properties (the value of corrosion current density is <5.0.10–10 A/cm2). The volumetry method in vitro in an artificial media (Simulated Body Fluid — SBF, 37 °C) made a definition that simulation of ion composition of human blood plasma leads to significant reduction of dissolution rate of Mg alloys with composite coatings in comparison with bare alloys. Analysis of the results indicated the highest degree of the protective properties of the polymer-containing coating on the magnesium alloy MA8 surface. The hydrogen evolution was not observed during 28 days of the sample exposure in SBF-solution. Сomposite coatings on the surface of the MA20 and MA14 alloys decrease the corrosion rate of the samples in the SBF-solution in 50 and 3 times in comparison with the uncoated material, respectively. The surface of the hydroxyapatite-containing composite coating remains to be a bioactive.

keywords Mg alloy, plasma electrolytic oxidation, implant, hydroxyapatite, bioactivity, resorption, superdispersed polytetrafluoroethylene

1. Murr L. E. Handbook of Materials Structures, Properties, Processing and Performance. Berlin : Springer International Publishing. 2015. 1152 p.
2. Trakhtenberg I. Sh., Rubshtein A. P., Volkova E. G., Petrova S. A., Fishman A. Ya., Zakharov R. G., Vykhodets V. B., Kurennykh T. E. Effect of mechanical activation on the morphology and structure of hydroxyapatite. Inorganic Materials. 2011. Vol. 47. pp. 45–50.
3. Campana V., Milano G., Pagano E., Barba M., Cicione C., Salonna G., Lattanzi W., Logroscino G. Journal of Materials Science: Materials in Medicine. 2014. Vol. 25. pp. 2445–2461.
4. Guan Y. C., Zhou W., Zheng H. Y. Journal of Applied Electrochemistry. 2009. Vol. 39. pp. 1457–1464.
5. Chen Y., Xu Z., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia. 2014. Vol. 10. pp. 4561–4573.
6. Bornapour M., Celikin M., Pekguleryuz M. Thermal exposure effects on the in-vitro degradation and mechanical properties of Mg–Sr and Mg–Ca–Sr biodegradable implant alloys and the role of the microstructure. Material Science and Engineering: C. 2015. Vol. 46. pp. 16–24.
7. Razavi M., Fathi M., Savabi O., Vashaee D., Tayebi L. Improvement of biodegradability, bioactivity, mechanical integrity and cytocompatibility behavior of biodegradable mg based orthopedic implants using nanostructured Bredigite (Ca7MgSi4O16) bioceramic coated via ASD/EPD technique. Annals of Biomedical Engineering. 2014. Vol. 42. pp. 2537–2550.
8. Liu Y., Yang F., Zhang Z., Zuo G. Russian Journal of Electrochemistry. 2013. Vol. 49. pp. 987–993.
9. Maiorova N. A., Safonov V. A., Skundin A. M. Russian Journal of Electrochemistry. 2013. Vol. 49. pp. 908–914.
10. Gu X., Kaese V., Zheng Y., Zhong S., Xi T. Biomaterials. 2009. Vol. 30. pp. 484–498.
11. Chen Y., Yan J., Wang X., Yu S., Wang Z., Zhang X., Zhang S., Zheng Y., Zhao C., Zheng Q. Biometals. 2014. Vol. 27. pp. 1217–1230.
12. Barinov S. M. Russian Journal of General Chemistry. 2010. Vol. 80. pp. 666–674.

13. Witte F., Hort N., Vogt C., Cohen S., Kainer K. U., Willumeit R., Feyerabend F. Current Opinion in Solid State & Materials Science. 2008. Vol. 12. pp. 63–72.
14. Evdokimov P. V., Putlyaev V. I., Ivanov V. K., Garshev A. P., Shatalova T. B., Orlov N. K., Klimashina E. S., Safronova T. V. Russian Journal of Inorganic Chemistry. 2014. Vol. 59. pp. 1219–1227.
15. Dorozhkin S. V. Acta Biomaterialia. 2014. Vol. 10. pp. 2919–2934.
16. Solonenko A. P., Golovanova O. A. Russian Journal of Inorganic Chemistry. 2014. Vol. 59. pp. 1228–1236.
17. Skogareva L. S., Ivanov V. K., Pilipenko G. P., Tripolskaya T. A. Russian Journal of Inorganic Chemistry. 2012. Vol. 57. pp. 6–14.
18. Lee K. M., Ko Y. G., Shin D. H. Journal of Alloys and Compounds. 2014. Vol. 615. pp. S418–S422.
19. Liu F., Xu J., Wang F., Zhao L., Shimizu T. Surface and Coatings Technology. 2010. Vol. 204. pp. 3294–3299.
20. Gnedenkov S. V., Sinebryukhov S. L., Mashtalyar D. V., Egorkin V. S., Sidorova M. V., Gnedenkov A. S. Corrosion Science 2014. Vol. 85. pp. 52–59.
21. Gnedenkov S. V., Sinebryukhov S. L., Khrisanfova O. A., Zavidnaya A. G., Egorkin V. S., Puz A. V., Sergienko V. I. Protection of Metals and Physical Chemistry of Surfaces. 2013. Vol. 49. pp. 874–879.
22. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Gnedenkov S. V. Surface and Coatings Technology. 2013. Vol. 225. pp. 112–118.
23. Gallyamov M. O., Buznik V. M., Tsvetnikov A. K., Vinokur R. A., Nikitin L. N., Said-Galiev E. E., Khokhlov A. R., Schaumburg K. Khimicheskaya Fizika. 2004. Vol. 23. pp. 76–87.
24. Bouznik V. M., Kirik S. D., Solovyov L. A., Tsvetnikov A. K. Powder Diffraction Journal. 2004. Vol. 19. pp. 219–224.
25. Ignatieva L. N., Tsvetnikov A. K., Gorbenko O. N., Kaidalova T. A., Buznik V. M. Journal of Structural Chemistry. 2004. Vol. 45. pp. 786–792.
26. Dorozhkin S. V., Epple M. Angewandte Chemistry. 2002. Vol. 114. pp. 3260–3277.
27. Gnedenkov S. V., Khrisanfova O. A., Sinebryukhov S. L. et al. Korroziya: materialy, zashchita = Corrosion: materials, protection. 2008. No. 8. pp. 24–30.
28. Rakoch A. G., Bardin I. V. Korrozionnostoykie i zharostoykie materialy: korrozionnaya stoykost legkikh konstruktsionnykh splavov v razlichnykh sredakh (Corrosion-resistant and heat-resistant materials: corrosion resistivity of light construction alloys in various mediums). Moscow: Publishing House “MISiS”, 2011. 78 p.
29. Gnedenkov S. V., Sinebryukhov S. L., Zavidnaya A. G., Egorkin V. S., Puz A. V., Mashtalyar D. V., Sergienko V. I, Yerokhin A. L., Matthews A. Journal of the Taiwan Institite of Chemical Engineers. 2014. Vol. 45. pp. 3104–3109.

Language of full-text russian
Full content Buy