Название |
Milling machine for coal, ash-and-slag waste of power generation plants and other materials |
Информация об авторе |
Sibekotekhnika Science and Production Enterprise, Novokuznetsk, Russia:
V. I. Murko, Director for Science, Professor, Doctor of Engineering Sciences, sib_eco@kuz.ru G. D. Vakhrusheva, Researcher D. A. Chernykh, Researcher
Siberian State Industrial University, Novokuznetsk, Russia: V. O. Shekhovtseva, Senior Lecturer |
Реферат |
In view of the growing demand in the economic sector, including mining and coal-fired power generation, and for the purpose of diminishing accumulations of ore concentration rejects and ash-and-slag waste at heat power plants and iron-and-steel works, the authors present the original design of a new energy-saving high-production milling machine and its experimental test results. The machine design and the milling flow diagram are described. The designed milling machine enables more efficient wet milling at lower energy consumption as compared with the known vertical and horizontal vibro mills owing to utilization of entire volume of milling cell, bottom-up vertical flow of milled material in the outer cavity of the cell under hydraulic head and due to decrease in the milled material flow velocity on transition from one cavity to the other. The article reports data on fine milling of ash-and-slag waste of power generation plants and coal slag (the latter — for production of coal–water slurry fuel — CWSF). As an illustration, graphoanalytical distribution of particles with respect to a minimum before and after milling of ash-andslag waste is shown with validation of the final product being a fine milled product similar to cement in terms of the grinding coarseness. In this connection, the milled ash-and-slag waste is recommended to be included in the mix of binding agents in solidifying backfill. In this case, cement consumption is reduced more than by 30% as compared with the conventional technology. The milling machine is advised for the use in preparation of backfill mixtures (to avoid or considerably reduce expensive cement consumption) and in production of CWSF which will allow using sulfur absorption agents to reduce sulfur oxide emission in fuel combustion at power generation plants and boiler-houses. The study was carried out under financial support from the RF Ministry of Education and Science within the framework of the federal targeted program on R&D in Priority Areas of Advancement of the Russian Science and Technology for 2014–2020, Agreement No. 14.583.21.0004 as of July 16, 2014. Unique Project Identifier RFMEF158314X0004. The authors appreciate participation of V. I. Karpenok, T. M. Pavlova and L. A. Smerdov, Sibekotekhnika Science and Production Enterprise, in this research. |
Библиографический список |
1. Khayrutdinov M. M. Puti sovershenstvovaniya sistemy razrabotki s zakladkoy vyrabotannogo prostranstva (Ways of improvement of goaf stowing mining system). Gornyi Zhurnal = Mining Journal. 2007. No. 11. pp. 27–29. 2. Shekhovtsova V. O., Murko V. I., Ponasenko L. P., Ponasenko S. L. Obosnovanie tekhnologii utilizatsii zoloshlakovykh otkhodov ugolnykh teploelektrotsentraley pri dobyche poleznykh iskopaemykh (Substantiation of the technology of utilization of gold slag wastes of coal heat power plants during mineral extraction). Ugol = Russian Coal. 2013. No. 11. pp. 34–35. 3. Hassani F. P., Benzaazoua M., Nokken M. Evaluation of the Effect of Sodium Silicate Addition to Mine Backfill, Gelfill. 22nd World Mining Congress & Expo. Istanbul, 2011. Vol. 1. pp. 317–324. 4. Lyashenko V. I. Sovershenstvovanie tekhnologii zakladochnykh rabot na gornykh predpriyatiyakh (Improvement of stowing operation technology at mining enterprises). Metallurgicheskaya i gornorudnaya promyshlennost = Metal Journal. 2012. No. 4. pp. 87–91. 5. Doynikov Yu. A., Montyanova A. N., Borodin A. A., Latynin V. V., Timofeev A. N. Sostoyanie i perspektivy zakladochnykh rabot na almazodobyvayushchikh rudnikakh Aktsionernoy Kompanii «ALROSA» (State and prospects of stowing at JSC «ALROSA» diamond mines). Gornyi Zhurnal = Mining Journal. 2011. No. 7. pp. 56–58. 6. Krupnik L. A., Shaposhnik Yu. N., Tursunbpeva A. K. Tekhnologiya zakladochnykh rabot na gornodobyvayushchikh predpriyatiyakh respubliki Kazakhstan (Backfilling technology in Kazakhstan mines). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2013. No. 1. pp. 95–105. 7. Petlevanyy M. V. Upravlenie strukturoy tverdeyushchey zakladki pri podzemnoy dobyche zheleznykh rud (Control of the solid stowing structure during the underground mining of iron ores). Gornyy vestnik = Mining Bulletin. 2012. Vol. 1, No. 95-1 (1). pp. 198–202. 8. Ahmaruzzaman M. A review on the utilization of fly ash. Progress in Energy and Combustion Science. 2010. Vol. 36. pp. 327–363. 9. Mishraa D. P., Das S. K. A study of physic-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines. Materials Characterization. 2010. Vol. 61. pp. 1252–1259. 10. Szponder D. K., Trybalski K. The Determination of Physico-Chemical and Mineralogical Properties of Fly Ash Used in Mining Industry. 22nd World Mining Congress & Expo. Istanbul, 2011. Vol. 2. pp. 629–639. 11. Ergin H., Eskikaya S. The properties of an innovative ultra-fine cements produced in Turkey. 22nd World Mining Congress & Expo. Istanbul, 2011. Vol. 3. pp. 121–127. 12. Kuzmenko A. M., Petlevanyy M. V., Usatyy V. Yu. Vliyanie tonkoizmelchennykh fraktsiy shlaka na prochnostnye svoystva tverdeyushchey zakladki (Influence of fine-grained fractions of slag on the durability properties of solid stowing). Shkola podzemnoy razrabotki : sbornik nauchnykh trudov IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii, 12–18 sentyabrya 2010 goda (Underground mining school : collection of scientific procee dings of the IV International scientific-practical conference, September 12–18, 2010). Dnepropetrovsk : National Mining University, 2010. pp. 383–386. 13. Krut O. A., Bilecky V. S. Coal-water slurry fuel: current status and prospects. Vіsnik Natsіonalnoi akademіi nauk Ukraini = Bulletin of National Academy of Sciences of Ukraine. 2013. No. 8. pp. 58–65. 14. Borovskiy D. N., Vaytekhovich P. E. Izmelchenie materialov v vertikalnoy tsentrobezhnosharovoy melnitse s klassifikatsionnoy kameroy (Grinding of materials in vertical centrifugalball mill with classification chamber). Vestnik Polotskogo gosudarstvennogo universiteta. Seriya V: Promyshlennost. Prikladnye nauki = Bulletin of Polotsk State University. Series V: Industry. Applied sciences. 2013. No. 3. pp. 135–138. 15. Arsentev V. A., Vaysberg L. A., Zarogatskiy L. P., Shuloyakov A. D. Proizvodstvo kubovidnogo shchebnya i stroitelnogo peska s ispolzovaniem vibratsionnykh drobilok (Production of cubical crushed stone and construction sand using vibration crushers). Saint Petersburg : A. P. Karpinsky Russian Geological Research Institute, 2004. 112 p. 16. Murko V. I., Smerdov L. A., Shekhovtsova V. O., Chernykh D. A. Vertikalnaya vibratsionnaya melnitsa (Vertical vibration mill). Patent RF, No. 144721, IPC B 02 C 19/16, B 02 C 17/00. Applied: December 17, 2013. Published: June 28, 2014. Bulletin No. 24. 17. Andreev S. E., Perov V. A., Zverevich V. V. Droblenie, izmelchenie i grokhochenie poleznykh iskopaemykh (Grinding, crushing and screening of minerals). Moscow : Nedra, 1980. 415 p. |