Название |
Upgrading the thermal performance of shaft furnaces during the air supply reconstruction. Part 1 |
Информация об авторе |
Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg, Russia:
V. I. Matyukhin, Senior Researcher, Assistant Professor of a Chair of Thermal Physics and Informatics in Metallurgy, e-mail: matyhin53@mail.ru Yu. G. Yaroshenko, Professor of a Chair of Thermal Physics and Informatics in Metallurgy, e-mail: yury-y@planet-a.ru O. V. Matyukhin, Assistant Professor of a Chair of Thermal Physics and Informatics in Metallurgy, e-mail: matyhin53@mail.ru
LLC “Mednogorsk copper-sulfur combine”, Mednogorsk, Russia: K. V. Bulatov, Chief Executive Officer |
Реферат |
In spite of the considerable experience of industrial exploitation of shaft furnaces, their operation differs by the decreased technical and economic indices, caused by the lack of the practical guidelines for design upgrading of furnaces and their parts, and for thermal condition technological parameters improvement. Investigations of the state of thermal and gas-dynamic operation of the shaft melting furnace at Mednogorsk copper-sulfur combine showed the presence of big reserves in their operation due to equalization of the temperature field of materials layer, caused by the differences of heat transfer conditions, and characterized by the ratio of thermal capacity of charge and gas flows <1. Analysis of the gas phase composition in the charge surface layer showed the anthracite burning in mixture with copper-containing charge in the conditions of significant irregularity of gas distribution, relative to the low temperatures in the burning area in the temperature range of 1105–1230 оС and air discharge coefficient <1. Three thermal areas were defined, differ by the heat exchange conditions between gases and materials with the presence of chemical underburning and temperature in the burning area of not less than 1105– 1230 оС. The area placed near the air inlet is in the most favourable conditions. The active charge smelting area is in the central part. The layer area with the lack of air is placed in the most remote part from the air inlet. Low technical and economic indicators of the shaft furnace operation are caused by the irregular distribution of air blowing both along the perimeter, and in the cross section of aggregate. These indicators required the air supply reconstruction. |
Библиографический список |
1. Naboychenko C. C., Ageev N. G., Doroshkevich A. P. et al. Protsessy i apparaty tsvetnoy metallurgii : uchebnik dlya vuzov (Processes and apparatuses of non-ferrous metallurgy : tutorial for universities). Under the editorship of S. S. Naboychenko. Ekaterinburg : Ural State Technical University, 1997. 655 p. 2. Khudyakov I. F., Klein S. E., Ageev N. G. Metallurgiya medi, nikelya, soputstvuyushchikh elementov i proektirovanie tsekhov (Copper, nickel, accompanying elements metallurgy and shop design). Moscow : Metallurgiya, 1993. 3. Zongliang Zhang, Jiale Meng, Lei Guo, Zhancheng Guo. Numerical Study of the Gas Distribution in an Oxygen Blast Furnace. Part 2: Effects of the Design and Operating Parameters. The Journal of The Minerals, Metals & Materials Society. 2015. Vol. 67, No. 9. pp. 1945–1955. 4. Liu B. N., Li Q., Zou Z. S., Yu A. B. Discussion on chemical energy utilisation of reducing gas in reduction shaft furnace. Dongbei Daxue Xuebao. Journal of Northeastern University. 2015. Vol. 36, No. 9. pp. 1293–1296, 1301. 5. Yaroshenko Yu. G., Matyukhin V. I., Gordon Ya. M. et al. Klassifikatsiya sloevykh pechey i agregatov (Classification of layer furnaces and aggregates). Sbornik trudov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Energosberegayushchie tekhnologii v promyshlennosti. Pechnye agregaty. Ekologiya” (Collection of proceedings of the VII International scientificpractical conference “Energy-saving technologies in industry. Furnace aggregates. Ecology”). Moscow, 2014. pp. 481–484. 6. Glinkov M. A. Osnovy obshchey teorii teplovoy raboty pechey (Basis of the general theory of thermal operation of furnaces). Moscow : State Scientific-Technical Publishing House, 1962. 575 p. 7. Troyb S. G. Kontrol koeffitsienta izbytka vozdukha (Excess air coefficient control). Sverdlovsk : State Scientific-Technical Publishing House, 1955. 228 p. 8. Gushchin S. N., Kazyaev M. D., Kryuchenkov Yu. V. et al. Teoriya i praktika teplogeneratsii : uchebnik (Theory and practice of thermal generation : tutorial). Under the editorship of V. I. Lobanov, S. N. Gushchin. Ekaterinburg : Ural State Technical University – Ural Polytechnic Institute, 2005. 379 p. 9. Yaroshenko Yu. G., Gordon Ya. M., Khodorovskaya I. Yu. Energoeffektivnye i resursosberegayushchie tekhnologii chernoy metallurgii : uchebnoe posobie dlya vuzov (Energy efficient and resource-saving tehnologies of ferrous metallurgy : tutorial for universities). Under the editorship of Yu. G. Yaroshenko. Ekaterinburg : LLC “UIPTs”, 2012. 670 p. 10. Lisienko V. G., Shchelokov Ya. M., Ladygichev M. G. Khrestomatiya energosberezheniya (Energy saving book). Under the editorship of V. G. Lisienko. Moscow : Teploenergetik, 2002. 768 p. 11. Dong H., Feng J.-S., Li P., Cai J.-J. Numerical simulation on gas flow affected by constructional parameters of pelletizing shaft furnaces. Dongbei Daxue Xuebao. Journal of Northeastern University. 2013. Vol. 34, No. 7. pp. 980–984. 12. Iwai Y., Ishiwata N., Murai R., Matsuno H. Shaft furnace simulation by mathematical model considering coke gasification rate in high temperature. Tetsu-To-Hagane. Journal of the Iron and Steel Institute of Japan. 2015. Vol. 101, No. 8. pp. 416–421. 13. Matyukhin V. I., Yaroshenko Yu. G., Matyukhin O. V., Panshin A. M., Konovalov I. S. Ispolzovanie energii akusticheskogo polya dlya uluchsheniya pokazateley raboty shakhtnykh pechey (Usage of acoustic field energy for improvement of indices of thermal performance of blast furnace). Tsvetnye Metally = Non-ferrous metals. 2013. No. 8. pp. 64–70. 14. Volkhin A. I., Ermilov V. I., Serebryanikov Yu. G., Eliseev E. I., Matyukhin V. I. Issledovanie teplovoy i gazodinamicheskoy raboty shakhtnogo agregata dlya polucheniya mednogo shteyna (Investigation of thermal and gas-dynamic operation of mine aggregate for copper matte obtaining). Tsvetnye Metally = Non-ferrous metals. 2000. No. 9. pp. 35–38. |