Журналы →  Tsvetnye Metally →  2016 →  №5 →  Назад

MATERIALS SCIENCE
Название Peculiarities of application of heat-resistant titanium alloy VT8-1 (ВТ8-1) for the bladed integrated disks of gas-turbine engine compressor
DOI 10.17580/tsm.2016.05.10
Автор Kashapov O. S., Pavlova T. V., Kondrateva A. R., Kalashnikov V. S.
Информация об авторе

All-Russian Institute of Aviation Materials, Moscow, Russia:

O. S. Kashapov, Head of a Sector
T. V. Pavlova, Leading Engineer
A. R. Kondrateva, Engineer, e-mail: nasty.77@list.ru
V. S. Kalashnikov, Engineer

Реферат

This article shows the main factors, defining the technical requirements to the blisk-type bladed integrated disks made of titanium alloys. Influence of thermal treatment modes on the phase composition, structure and complex of the material mechanical properties was investigated for the operating wheel of aviation gas-turbine engine compressor made of heat-resistant (α + β)-titanium alloy VT8-1 (ВТ8-1) (Ti – Al – Sn — Zr – Mo – Si). The investigations used several technical treatment modes, which differ from the serial one by the temperature increase on the first stage of annealing and its decreasing on the second stage. Material, annealed with the changed processing temperatures both on the first and on the second stages, has the best combination of mechanical properties. Investigation of the structure of material, annealed by the corrected mode, shows that annealing temperature increase leads to decreasing of the volume ratio of the primary -phase and some growth of α-grain. Reduction of temperature on the second annealing stage preliminates the residue of titanium silicides by the interphase borders, which makes the positive influence on material viscosity characteristics and tells about the increasing of the part of solid-solution strengthening of α- and β-phases. The given changes of the structure and phase composition provide the growth of the strength characteristics and heat resistance of the bladed integrated disk punching (VT8-1 alloy). At the same time, in spite of some increasing of the sizes of conventional β-grain, the fatigue life of the material is also increased, which is especially important for the design of blisk-type compressor wheel.

Ключевые слова Heat-resistant titanium alloys, thermal treatment, microstructure, strength, fatigue life, heat-resistance, destruction viscosity, blisk
Библиографический список

1. Belov S. P., Brun M. Ya., Glazunov S. G. et al. Metallovedenie titana i ego splavov (Metal science of titanium and its alloys). Moscow : Metallurgiya, 1992. 352 p.
2. Prokhodtseva L. V., Erasov V. S., Lavrova O. Yu., Lavrov A. V. Vliyanie formy tsikla na ustalostnye svoystva i mikrostroenie izlomov titanovogo splava VT3-1 (Influence of the type of cycle on fatigue properties and microstructure of titanium alloy VT3-1 (ВТ3-1) fractures). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2012. No. 2. pp. 54–58.
3. Khorev A. I. Fundamentalnye i prikladnye raboty po konstruktsionnym titanovym splavam i perspektivnye napravleniya ikh razvitiya (Fundamental and applied projects on titanium alloys and perspective areas of their development) Trudy Vserossiyskogo Nauchno-Issledovatelskogo Instituta Aviatsionnykh Materialov = Proceedings of All-Russia Research Institute of Aviation Materials. 2013. No. 2. Available at : http://viam-works.ru/ru/articles?art_id=12.
4. Pavlova T. V., Kashapov O. S., Nochovnaya N. A. Titanovye splavy dlya gazoturbinnykh dvigateley (Titanium alloys for gas-turbine engines). Vse materialy. Entsiklopedicheskiy spravochnik = All materials. Encyclopedia reference book. 2012. No. 5. pp. 8–14.
5. Kashapov O. S., Novak A. V., Nochovnaya N. A., Pavlova T. V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnykh titanovykh splavov dlya detaley gazoturbinnykh dvigateley (State, problems and prospects of heatresistant titanium alloys for GTE parts). Trudy Vserossiyskogo Nauchno-Issledovatelskogo Instituta Aviatsionnykh Materialov = Proceedings of All-Russia Research Institute of Aviation Materials. 2013. No. 3. Available at : http://viamworks.ru/ru/articles?art_id=20.
6. Pavlova T. V., Kashapov O. S., Kondrateva A. R., Kalashnikov V. S. Vozmozhnosti po rasshireniyu oblasti primeneniya splava VT8-1 dlya diskov i rabochikh koles kompressora (Opportunities to expand the VT8-1 alloy application for disks and compressor rotor wheels). Trudy Vserossiyskogo Nauchno-Issledovatelskogo Instituta Aviatsionnykh Materialov = Proceedings of All-Russia Research Institute of Aviation Materials. 2016. No. 3. Available at : http://viam-works.ru/ru/articles?art_id=933.
7. Kablov E. N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda (Strategic ways of development of materials and their processing technologies for the period to 2030). Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik. Prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii” (Aviation materials and technologies : anniversary scientific-technical collection. Application to the journal “Aviation materials and technologies”). Moscow : All-Russian Institute of Aviation Materials, 2012. pp. 7–17.
8. Erasov V. S., Yakovlev N. O., Nuzhnyy G. A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnykh materialov (Qualification testings and investigations of strength of aviation materials). Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik. Prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii” (Aviation materials and technologies : anniversary scientific-technical collection. Application to the journal “Aviation materials and technologies”). Moscow : All-Russian Institute of Aviation Materials, 2012. pp. 440–447.
9. Moiseev V. N. Vysokoprochnye titanovye splavy dlya aviakosmicheskoy tekhniki (High-strength titanium alloys for aviaspace technics). Aviatsionnye materialy. Izbrannye trudy “VIAM” 1932–2002 : yubileynyy nauchnotekhnicheskiy sbornik (Aviation materials. Collected works of All-Russian Institute of Aviation Materials of 1932–2002 : anniversary scientific-technical collection). Under the general editorship of E. N. Kablov. Moscow : All-Russian Institute of Aviation Materials, 2002. pp. 115–121.
10. Kablov E. N. Materialy dlya izdeliya “Buran” – innovatsionnye resheniya formirovaniya shestogo tekhnologicheskogo uklada (Materials for “Buran” – innovation solutions of formation of the sixth technological mode). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2013. No. S1. pp. 3–9.
11. Kablov E. N., Zakharov Yu. I., Nochovnaya N. A., Tuzova E. V. Sposob termicheskoy obrabotki vysokoprochnykh (α + β)-titanovykh splavov (Method of thermal treatment of high-strength (α + β)-titanium alloys). Patent RF, No. 2465366, IPC C 22 F 1/18. Applied: September 15, 2011. Published: October 27, 2012. Bulletin No. 30.
12. Kablov E. N., Khorev A. I., Nochovnaya N. A., Tarasenko E. N. Sposob termomekhanicheskoy obrabotki izdeliy iz titanovykh splavov (Method of thermomechanical treatment of products made of titanium alloys). Patent RF, No. 2457273, IPC C 22 F 1/18. Applied: April 05, 2011. Published: July 27, 2012. Bulletin No. 21.
13. Bußmann M., Kraus J., Bayer E. An integrated cost-effective approach to blisk manufacturing. Proceedings of 17th Symposium on Air Breathing Engines. Munich, Germany, 4–9 September 2005.
14. RTM 1.2.072–89. Proizvodstvo diskov, valov, lopatok i lopatochnoy zagotovki iz titanovykh splavov. Direktivnaya tekhnologiya (Guiding Technical Materials 1.2.072-89. Manufacturing of disks, rollers, blades and blade billets from titanium alloys. Directive technology). Introduced: 1989–05–04. Moscow : All-Russian Institute of Aviation Materials, 1989. 10 p. (in Russian).
15. OST 1 90197–89. Pokovki diskov i valov kovanye i shtampovannye iz titanovykh splavov. Obshchie tekhnicheskie usloviya (Branch standard 1 90197–89. Disk and roller forgings, stamped from titanium alloys. General technical conditions). Introduced: 1989–09–01. Moscow : All-Russian Institute of Aviation Materials, 1989. 22 p. (in Russian).
16. PI 1.2.785–2009. Metallograficheskiy analiz titanovykh splavov (Commercial information 1.2.785–2009. Metallografic analysis of titanium alloys). Introduced: 2010–01–01. Moscow : All-Russian Institute of Aviation Materials, 2010. 45 p. (in Russian)
17. GOST 1497–84. Metally. Metody ispytaniy na rastyazhenie (State Standard 1497–84. Metals. Methods of tension test). Introduced: 1986–01–01. Moscow : Publishing House of Standards, 1986. 28 p. (in Russian)
18. GOST 9454–78. Metally. Metod ispytaniya na udarnyy izgib pri ponizhennykh, komnatnoy i povyshennykh temperaturakh (State Standard 9454–78. Metals. Method for testing the impact strength at low, room and high temperature). Introduced: 1979–01–01. Moscow : Publishing House of Standards, 1979. 12 p. (in Russian)
19. GOST 9651–84. Metally. Metody ispytaniy na rastyazhenie pri povyshennykh temperaturakh (State Standard 9651–84. Metals. Methods of tension tests at elevated temperatures). Introduced: 1986–01–01. Moscow : Publishing House of Standards, 1986. 6 p. (in Russian)
20. GOST 10145–81. Metally. Metod ispytaniya na dlitelnuyu prochnost (State Standard 10145-81. Metals. Stress-rupture test method). Introduced: 1982–07–01. Moscow : Publishing House of Standards, 1981. 11 p. (in Russian)
21. Kashapov O. S., Pavlova T. V., Nochovnaya N. A. Issledovanie termicheskoy stabilnosti splava VT41 posle razlichnoy termicheskoy obrabotki (Investigation of thermal stability of VT41 (ВТ41) alloy after various thermal treatment). Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment. 2010. No. 8. pp. 30–34.
22. TU 1825-689-07510017–2014. Pokovki kovanye i shtampovannye diskov (bliskov) iz titanovogo splava marki VT8-1 s reglamentirovannoy strukturoy (Technical requirements 1825-689-07510017–2014. Forgings and die forgings of the disks (blisks) made of titanium alloy VT8-1 (ВТ8-1) with regulated stricture). (in Russian).
23. Boyer R., Welsch G., Collings E. W. Materials properties handbook. Titanium alloys. Metals Park, Ohio : ASM International, 1994. pp. 337–376.
24. International titanium association. Specifications book. Fourth edition – 2005. Homepage for Surface Embedded Metal Oxide Sensors (SEMOS). Available at : http://www.semos.dk/Per/41653/download/Titanium_Specifications_Book.pdf.
25. Jackson J., Rice R. Preliminary material properties Handbook. Vol. 2: SI Units. pp. 5–3–5–8. Defense Technical Information Center. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/a388463.pdf.

26. Kitashima T., Suresh K. S., Yamabe-Mitarai Y. Present stage and future prospects of development of compressor material. Crystal research & technology. 2015. Vol. 50, No. 1. pp. 28–37.
27. Chan Hee Park, Byounggab Lee, Semiatin S. L., Chong Soo Lee. Low-temperature superplasticity and coarsening of Ti – 6Al – 2Sn – 4Zr – 2Mo – 0.1Si. Materials Science and Engineering A. 2010. Vol. 527, No. 20. pp. 5203–5211.
28. Posavliak S., Maksimovic K., Jankovic M. Tracking initial cracks in turbojet engine disks and possibilities of postponing their occurrence. Scientific Technical Review. 2010. Vol. 60, No. 2. pp. 27–31.
29. Ghonem H. Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys. International Journal of Fatigue. 2010. Vol. 32, No. 9. pp. 1448–1460.

Language of full-text русский
Полный текст статьи Получить
Назад