Журналы →  Chernye Metally →  2016 →  №6 →  Назад

Power Engineering and Ecology
Название Development of energy saving program of integrated iron and steel works on the basis of information-analytical system “OptiMet”
Автор I. A. Sultanguzin, P. A. Shomov
Информация об авторе

National Research University “MPEI” (Moscow, Russia):

Sultanguzin I. A., Dr. Eng., Prof., Chair of Industrial Thermal Energy Systems, Institute of Problems of Power Engineering Efficiency, e-mail: sultanguzinIA@mpei.ru

 

Scientific and Technical Center “Industrial Power Engineering” (Ivanovo, Russia):
Shomov P. A., Prof.

Реферат

Methodological approaches to modernization of energy technological system of integrated iron and steel works on the basis of data and knowledge of world and domestic experience are given in the article. Analysis and assessment of influence of energy saving projects and technologies on decrease of energy consumption by integrated iron and steel works, and on reduction of environmental impact of their harmful emissions are carried out in the article. The information and analytical system “OptiMet” is applied for modeling and optimization of energy technological system of averaged integrated iron and steel works. Environmental impact assessment of harmful emissions is carried out on the basis of Impact Pathways methodology with using of geoinformation system «Map 2008». Results of optimization calculations in combining with results of energy audit allow to develop the energy saving program at integrated iron and steel works. It is concluded that the information and analytical system “OptiMet” can be considered as the high-effective tool for forming and evaluation of the strategy and tactics of energy saving and solving the environment protection problems in the framework of the complex control and management system for a metallurgical integrated works, i.e. as a tool providing realization of power engineering and technical rearmament.

Ключевые слова Integrated iron and steel works, energy technological system, energy consumption, energy saving, modeling, optimization, harmful emissions, environmental impact, geoinformation system, sinter, coke, iron, steel, rolled metal
Библиографический список

1. Sazanov B. V., Sitas V. I. Teploenergeticheskie sistemy promyshlennykh predpriyatiy (Thermal energetic systems of industrial enterprises). Moscow : Energoatomizdat, 1990. 304 p.
2. Grosmann I., Sitas V. I., Sultanguzin I. A. Optimizatsiya energosnabzheniya metallurgicheskogo kombinata po energeticheskomu i ekologicheskomu kriteriyam (Optimization of energy supply of metallurgical combine according to energetic and ecological criteria). Promyshlennaya energetika = Industrial power engineering. 1989. No. 8. pp. 49–51.
3. Anokhin A. B., Sitas V. I., Sultanguzin I. A. et al. Matematicheskoe modelirovanie i optimizatsiya kak metod resheniya problem energosberezheniya i ekologii promyshlennykh rayonov (Mathematical modeling and optimization as a method of problem solving of energy supply and ecology of industrial regions). Teploenergetika = Thermal Engineering. 1994. No. 6. pp. 38–41.
4. Sitas V. I., Sultanguzin I. A., Shomov P. A. et al. Programmno-informatsionnaya sistema «OptiMet» upravleniya energeticheskimi i syrevymi resursami metallurgicheskogo kombinata (Softwareinformation system “OptiMet” for the management of energetic and raw material resources of metallurgical combine). Vestnik Moskovskogo Energeticheskogo Instituta = Vestnik of Moscow Power Engineering Institute. 2003. No. 5. pp. 114–119.
5. Sultanguzin I. A. Nauchno-tekhnicheskie osnovy modelirovaniya i optimizatsii energotekhnologicheskoy sistemy metallurgicheskogo kombinata: avtoreferat dissertatsii doktora tekhnicheskikh nauk (Scientifi ctechnical basis of modeling and optimization of energy-technological system of metallurgical combine: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences). Moscow : Publishing House of Moscow Power Engineering Institute, 2005. 40 p.
6. Sultanguzin I. A., Sitas V. I., Shomov P. A. et al. Sistemnyy analiz vliyaniya koksokhimicheskogo proizvodstva na energotekhnologicheskie, ekologicheskie i ekonomicheskie pokazateli metallurgicheskogo kombinata (System analysis of the infl uence of chemical-recovery production on energy-technological, ecological and economic indicators of metallurgical combine). Koks i khimiya = Coke and Chemistry. 2006. No. 5. pp. 44–54.
7. Sultanguzin I. A., Isaev M. V., Kurzanov S. Yu. Snizhenie energopotrebleniya i vrednogo vozdeystviya na okruzhayushchuyu sredu pri optimizatsii koksokhimicheskogo i staleplavilnogo proizvodstv (Reduction of energy consumption and harmful impact on environment during optimization of chemical-recovery and steelsmelting productions). Izvestiya vuzov. Chernaya metallurgiya = Izvestiya. Ferrous metallurgy. 2010. No. 12. pp. 56–60.
8. Anashkin A. S., Kadyrov E. D., Kharazov V. G. Tekhnicheskoe i programmnoe obespechenie raspredelennykh sistem upravleniya (Hardware and software of distributed control systems). Saint Petersburg : «P-2», 2004. 368 p.
9. Trifanov V. N., Konovalova Yu. V., Gagarin S. G. et al. Rasshirenie syrevoy ugolnoy bazy koksovaniya otkrytogo aktsionernogo obshchestva «Severstal» (Expanding the raw material coal base of carbonization of JSC “Severstal”). Koks i khimiya = Coke and Chemistry. 2002. No. 11. pp. 2–10.
10. Nechaev I. E., Konovalova Yu. V., Gurkin M. A. et al. Primenenie teorii sprosa i proizvodstva dlya opredeleniya ravnoy potrebitelskoy tsennosti pokupnogo ugolnogo syrya (Application of demand and production theory for defi nition of equal consumer valuability of purchased coal raw materials). Metallurgicheskaya teplotekhnika: Istoriya, sovremennoe sostoyanie, budushchee. K stoletiyu so dnya rozhdeniya M. A. Glinkova (Metallurgical thermal engineering: history, modern state, future. To the 100-th anniversary of M. A. Glinkov). Moscow, February 1 — 3, 2006. pp. 453–457.
11. Rabl A., Spadaro J. V. Public Health Impact of Air Pollution and Implications for the Energy System. Annual Reviews Energy Environment. 2000. Vol. 25. pp. 601–627.
12. Sultanguzin I. A. Ekologicheskaya bezopasnost i energeticheskaya effektivnost promyshlennykh teploenergeticheskikh sistem (Ecological safety and energy efficiency of industrial thermal energetic systems). Moscow : Publishing House of Moscow Power Engineering Institute, 2013. 288 p.
13. Lisienko V. G., Shchelokov Ya. M., Lapteva A. V., Dyugay P. A. Resursy i faktory upravleniya v energosberezhenii i ekologii (Resources and factors of management in energy supply and ecology). Under the editorship of V. G. Lisenko. Moscow : National Research Nuclear University “MEPhI”, 2011. 200 p.
14. Revich B. E. Zagryaznenie okruzhayushchey sredy i zdorove naseleniya (Environmental pollution and population health). Moscow : Publishing House of International Independent University of Environmental and Political Sciences, 2001. 264 p.
15. Pope C. A., Thun M. J., Naboodiri M. M. et al. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. American Journal of respiratory and Critical Care Medicine. 1995. Vol. 151. pp. 669–674.
16. Medina S., Plasencia A., Ballester F. et. al. Apheis: public health impact of PM10 in 19 European cities. Journal of Epidemiology and Community Health. 2004. Vol. 58. pp. 831–836.
17. Popyrin L. S. Matematicheskoe modelirovanie i optimizatsiya teploenergeticheskikh ustanovok (Mathematical modeling and optimization of thermal energetic tools). Moscow : Energiya, 1978. 416 p.
18. M. Pappas, J. Y. Moradi. Usovershenstvovannyy algoritm pryamogo poiska dlya zadach matematicheskogo programmirovaniya (An Improved Direct Search Mathematical Programming Algorithm). Trudy Amerikanskogo obshchestva inzhenerov-mekhanikov: seriya B. Konstruirovanie i tekhnologiya mashinostroeniya (Proceedings of the American Society of Mechanical Engineers: part B. Construction and Mechanical Engineering). 1975. No. 4. pp. 158—165.
19. Energy Use in the Steel Industry. International Institute of Steel Industry. Brussels. September 1998. 254 p.
20. Reinizhuber F., Aichinger H. M., Geischman E. et al. Izmenenie energeticheskogo khozyaystva metallurgicheskikh zavodov s polnym tsiklom (Change of power economy of metallurgical integrated works). Chernye Metally = Ferrous metals. 1990. No. 4. pp. 47–57.
21. Reinizhuber F. Povyshenie effektivnosti ispolzovaniya materialov i energii na metallurgicheskikh zavodakh s kislorodno-konverternym proizvodstvom stali (Increasing the efficiency of material and energy application on metallurgical plants with oxygen-converter steel production). Chernye Metally = Ferrous metals. 1998. No. 11–12. pp. 68–75.
22. H. Rosemann, B. Stranzinger, M. Baldermann, O. Heinemann. Sistemy regulirovaniya potrebleniya energii v chernoy metallurgii (Energy management systems improve the energy performance in the steel industry). Chernye Metally = Ferrous metals. 2013. No. 9. pp. 57–64.
23. P. Dahlmann, H. B. Lungen. Effektivnoe proizvodstvo stali i vklad chernoy metallurgii v podderzhanie ekologii planety (Efficient steelmaking and steel’s contribution to a low-carbon world). Chernye Metally = Ferrous metals. 2014. No. 9. pp. 32–41.
24. Shchelokov Ya. M., Lisienko V. G., Danilov N. I. Nailuchshie dostupnye tekhnologii obespecheniya energoeffektivnosti energoemkikh proizvodstv (The best available technologies of provision of energy efficiency of power-consuming productions). Ekaterinburg : Publishing House of Ural Federal University, 2014. 202 p.

Language of full-text русский
Полный текст статьи Получить
Назад