Журналы →  Tsvetnye Metally →  2016 →  №6 →  Назад

NOBLE METALS AND ALLOYS
Название Nuclear-physical methods of detection of non-ferrous metals content in samples on the basis of neutron and charged particle activation
DOI 10.17580/tsm.2016.06.08
Автор Solovev V. Yu., Demin V. F., Demin V. A., Fatkina S. S.
Информация об авторе

Federal Medical Biophysical Center named after A. I. Burnazyan, Moscow, Russia:

V. Yu. Solovev, Head of Laboratory of Anthropogenic Risk Analysis, e-mail: soloviev.fmbc@gmail.com
V. F. Demin, Leading Researcher
V. A. Demin, Deputy Head of Department
S. S. Fatkina, Engineer of Laboratory of Information-Analytical Systems

Реферат

The possibility of applying a series of nuclear-physical methods for detecting the non-ferrous metals and their compounds (including ultrafine form) was investigated in different environments. The experiments for definition of the content of Ag, Au and ZnO nanoparticles in biological samples using neutron-activation analysis were carried out on the basis of nuclear research reactor IR-8 (ИР-8). The test experiments with TiO2 nanoparticles were also carried out using reactions of fast neutrons and protons of isochronous cyclotron U-150 (У-150). The sensitivity of quantitative evaluation of gold and silver content in the samples with radiolabeling gold isotope 198Au and radiolabeling silver isotope 110mAg is 10–11 g and 10–9 g, respectively. The model experiment was carried out using the reactor IR-8 with an average density of thermal neutron flux 3·1012 n/(cm2·s). The gold content in ultrafine form in soil samples was evaluated. The possibility of using nuclear reactions with charged particles was reviewed for the quantitative determination of non-ferrous metals (for example, Ti, Eu, Pt, Mn). The biggest advantage of these methods is the absence of necessity of the special smaple preparation for their use and non-destruction of the sample, which is good for the additional investigation.
This work was carried out with the financial support of the Ministry of Education and Science of Russian Federation (agreement No. 14.604.21.0114 on August 11, 2014; unique identifier: RFMEFI60414X0114). The research work used the unique research reactor IR-8 (National Research Center “Kurchatov Institute”) and equipment from the Multiple-Access Center of the Moscow State University.

Ключевые слова Non-ferrous metals, environment, nuclear-physical methods, charged particles, nanoparticles, gold mining, gold, neutron-activation analysis
Библиографический список

1. Gmoshinskiy I. V., Khotimchenko S. A., Popov V. O., Dzantiev B. B., Zherdev A. V., Buzulukov Yu. P., Demin V. F. Nanomaterialy i nanotekhnologii: metody analiza i kontrolya (Nanomaterials and nanotechnologies: methods of analysis and control). Uspekhi khimii = Russian Chemical Reviews. 2013. Vol. 82, No. 1. pp. 48–76.
2. Frontaseva M. V. Neytronnyy aktivatsionnyy analiz v naukakh o zhizni (Neutron activation analysis in life sciences). Fizika elementarnykh chastits i atomnogo yadra = Physics of Particles and Nuclei Letters. 2011. Vol. 42, No. 2. pp. 636–716.
3. Frontasyeva M. V., Steinnes E. Harmonization of health related environmental measurements using nuclear and isotopic techniques. Vienna, 1997. pp. 301–311.
4. Kuznetsov R. A. Aktivatsionnyy analiz (Activation analysis). Moscow : Atomizdat, 1974. 343 p.
5. Dimitriou P., Pedro de Jesus A. Development of a reference database for particleinduced gamma ray emission (PIGE) spectroscopy. 3rd Research Coordination Meeting. Summary Report. 7–11 April 2014. 43 p.
6. Kotenko K. V., Belyaev I. K., Buzulukov Yu. P., Bushmanov A. Yu., Demin V. F., Gmoshinski I. V., Zhorova E. S., Kalistratova V. S., Marchenkov N. S., Nisimov P. G., Raspopov R. V., Soloviev V. Yu. Experimental research of zinc oxide-labeled nanoparticles biokinetics in rats’ organizm after single oral administration. Medical Radiolology and Radiation Safety. 2012. Vol. 57, No. 5. pp. 5–10.
7. Shilo N. A., Ippolitov E. G., Ivanenko V. V., Kustov V. N., Zheleznov V. V., Aristov G. N., Shtan A. S., Ivanov I. N., Kovalenko V. V., Kondratev N. B. Instrumental neutron activation determination of gold in mineral raw materials using a californium neutron source. Journal of Radioanalytical and Nuclear Chemistry. 1983. Vol. 79. pp. 309–316.
8. Ageev O. A., Medkov M. A., Ivannikov S. I., Yudakov A. A. Perspektivy zolotodobychi iz tekhnogennykh obektov mestorozhdeniya Nagima (Prospects of gold mining from technogenic objects of Nagima deposit). Tsvetnye Metally = Non-ferrous metals. 2015. No. 3. pp. 78–84. DOI: 10.17580/tsm.2015.03.2016
9. Datta J., Chowdhury D. P., Verma R. Determination of concentrations of trace elements in nuclear grade graphite by charged particle activation analysis. Journal of Radioanalytical and Nuclear Chemistry. 2014. Vol. 300. pp. 147–152.
10. D’Agostino G., Bergamaschi L., Giordani L., Oddone M., Kipphardt H., Richter S. Use of instrumental neutron activation analysis to investigate the distribution of trace elements among subsamples of solid materials. Metrologia. 2014. Vol. 51, No. 1. DOI: 10.1088/0026-1394/51/1/48
11. Debrun J. L., Riddle D. C., Schweikert E. A. Nondestructive charged particle activation analysis using short-lived nuclides. Analytical Chemistry. 1972. Vol. 44, No. 8. pp. 1386–1391.
12. Meijers P., Aten A. H. W. Average cross sections in charged particle activation analysis. Radiochimica Acta. 1968. Vol. 10, No. 3–4. pp. 175–176.
13. Rovni I., Szieberth M., Sandor F. Secondary charged particle activation method for measuring the tritium production rate in the breeding blankets of a fusion reactor. Nuclear Instruments and Methods. A. 2012. Vol. 690. pp. 85–95.
14. Litz M., Waits C., Mullins J. Neutron-activated gamma-emission: technology review. Army Research Laboratory. 2012. 37 p.

Language of full-text русский
Полный текст статьи Получить
Назад