Журналы →  Tsvetnye Metally →  2016 →  №9 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Mechanical alloying of powder alloy Al – Si – Ni with nanosized carbon additions
DOI 10.17580/tsm.2016.09.11
Автор Budelovskiy D. I., Petrovich S. Yu., Lipin V. A., Andreeva V. D.
Информация об авторе

Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia:

D. I. Budelovskiy, Student of a Chair “Technology and investigation of materials” (Institute of Metallurgy, Mechancal Engineering and Transport)
S. Yu. Petrovich, Head of Laboratory of Aluminium Powders Metallurgy (Institute of Metallurgy, Mechancal Engineering and Transport)
V. A. Lipin, Professor of a Chair “Physical chemistry, micro- and nanotechnologies” (Institute of Metallurgy, Mechancal Engineering and Transport), e-mail: vadim.lipin@km.ru
V. D. Andreeva, Assistant Professor of a Chair “Technology and investigation of materials” (Institute of Metallurgy, Mechancal Engineering and Transport)

Реферат

We investigated the effect of carbon-based additives on structure and properties of mechanically alloyed aluminum alloys Al – Si – Ni, designed for precision instrumentation. The experiments used the carbon-based additives obtained by different technologies and differing from the values of specific surface area and particle size: electrode graphite, recovered graphite oxide, activated recovered graphite oxide, thermally expanded graphite. As a result of comparative diffractogram analysis there was made a definition that the quality of phase composition of samples after mechanical alloying doesn’t change. However the quantity of amorphous part decreases, and alumina and silicium are the main phases in all samples. Attendance of Al-based solid solution was observed and its number in powder with activated reduced graphite oxide after treatment attains 2% while in other samples this number doesn’t exceed 0.5%. Initial compositions of powders contain up to 2% of graphite intercalation products and its number decreases because of mechanical alloying process. After mechanical alloying, graphite quantity in samples with activated reduced graphite oxide increases from 0.5 to 1%. Oxides attend up to 1.0–1.5%, preferred it is metastable γ-modification of Al2O3, and traces of alumina carbides Al3С4 and silicium carbides SiC. These materials were compacted in vacuum, while values of obtained temperature coefficient of linear expansion were measured. The use of carbon-based nanosized additives produces material with a low temperature coefficient of linear expansion and high strength characteristics compared to traditional surfactants (stearic acid, mineral oil). The values of linear thermal expansion coefficients in the temperature range of 20–120 oC with the help of nanosized carbon can be reduced to below 11·10–6 K–1.

Ключевые слова High silicon alloy, mechanical alloying, thermal expansion coefficient, composite powder materials, nano-dispersed graphite
Библиографический список

1. Arefev V. P., Isaev V. I., Sorokin A. V. et al. Primenenie novykh vysokokremnievykh splavov na alyuminievoy osnove v giropriborakh raketnokosmicheskoy tekhniki (Application of new high-silicon aluminium-based alloys in gyroinstruments of the space-rocket hardware). Giroskopiya i navigatsiya = Gyroscopy and Navigation. 2002. No. 4. pp. 23–28.
2. Sorokin A. V., Shilov I. F., Gopienko V. G., Cherepanov V. P. Razrabotka spetsialnykh vysokokremnievykh splavov na alyuminievoy osnove dlya pretsizionnoy tekhniki (Development of special high-silicon alloys on aluminium basis for precision technics). Sbornik nauchnykh trudov: Metallovedenie, plasticheskaya i termicheskaya obrabotki metallov. Materialy nauchno-prakticheskogo informatsionno-konsultativnogo seminara, 16–17 aprelya 2002 goda (Collection of scientific proceedings: metal science, plastic and thermal treatment of metals. Materials of scientific-practical information-consultating seminar, April 16–17, 2002). Saint Petersburg: Borey-Art, 2004. pp. 75–82.
3. Gopienko V. G., Petrovich S. Yu., Cherepanov V. P. et al. Metallicheskie poroshki alyuminiya, magniya, titana i kremniya. Potrebitelskie svoystva i oblasti primeneniya (Metallic powders of aluminium, magnesium, titanium and silicon. Consumption properties and areas of application). Under the editorship of A. I. Rudskoy. Saint Petersburg : Publishing House of Polytechnical University, 2012. 356 p.
4. Mironenko V. N., Butrim V. N., Vasenev V. V., Petrovich S. Yu., Cherepanov V. P. Sposob polucheniya poroshkovogo kompozitsionnogo materiala (Method of obtaining of powder composite material). Patent RF, No. 2394928, IPC C 22 C 1/04, C 22 C 21/02. Applier: JSC “Kompozit”. Applied: 02.09.2009. Published: 20.07.2010. Bulletin No. 20.
5. Baimakov A. Yu., Petrovich S. Yu., Lipin V. A., Shahmin A. L., Seytenov R. A. The influence of alloying additions on interaction of aluminum alloys with aqueous media. Light Metals. 2015. pp. 387–391.
6. Böyük U. Physical and Mechanical Properties of Al – Si – Ni Eutectic Alloy. Metals and Materials International. 2012. Vol. 18, No. 6. pp. 933–938.
7. Kukua-Kurzyniec A., Dutkiewicz J., Ochin P., Perrière L., Duzewski P., Góral A. Amorphous — Nanocrystalline Melt Spun Al – Si – Ni Based Alloys Modified with Cu and Zr. Archives of Metallurgy and Materials. 2013. Vol. 58, No. 2. pp. 419–423.
8. Gopienko V. G., Nazarov B. P., Zobnina N. S. Sovershenstvovanie promyshlennoy tekhnologii proizvodstva poroshkov splava SAS-1 (Improvement of industrial technology of production of powders of alloy SAS-1 (САС-1)). Sbornik nauchnykh trudov: Sovershenstvovanie proizvodstva alyuminiya i polufabrikatov s tselyu snizheniya energeticheskikh zatrat (Collection of scientific proceedings: Improvement of production of aluminium and middlings for the purpose of decreasing of energetic costs). Leningrad : All-Union Aluminium-Magnesium Institute, 1983. pp. 148–154.
9. Mironenko V. N., Petrovich S. Yu., Cherepanov V. P., Okunev S. A., Vasenev V. V. Poroshkovyy kompozitsionnyy material i sposob ego polucheniya (Powder composite material and method of its obtaining). Patent RF, No. 2353689, IPC C 22 C 1/05, C 22 C 21/02. Applier: JSC “Kompozit”. Applied: 15.11.2006. Published: 27.04.2009. Bulletin No. 12.
10. Avakumov E. G. Mekhanokhimicheskie metody aktivirovaniya khimicheskikh protsessov (Mechanochemical methods of activation of chemical processes). Novosibirsk : Nauka, 1986. 302 p.
11. TU 48-0107-42–80. Poroshok splava SAS-1. Tekhnicheskie usloviya (Technical requirements 48-0107-42–80. Powder of alloy SAS-1 (САС-1). Technical requirements). (in Russian)
12. Callister W. D. Jr. Materials science and engineering: an introduction. — 9th ed. John Wiley & Sons, Inc., 2015. 975 p.
13. GOST 19440–94. Poroshki metallicheskie. Opredelenie nasypnoy plotnosti. Chast 1. Metod s ispolzovaniem voronki. Chast 2. Metod volyumometra Skotta (State Standard 19440–94. Metallic powders. Determination of apparent density. Part 1. Funnel method. Part 2. Scott volumeter method). Introduced: 1997–01–01. (in Russian)
14. GOST 25279–93. Poroshki metallicheskie. Opredelnie plotnosti posle utryaski (State Standard 25279–93. Metallic powders. Determination of tap density). Introduced: 1997–01–01. (in Russian)
15. Khodakov G. S. Metod izmereniya udelnoy poverkhnosti vysokodispersnykh poroshkov po filtratsii gaza (Method of measurement of specific surface of highdisperse powders for according to the gas filtration). Kolloidnyy zhurnal = Colloid journal. 1995. Vol. 57, No. 2. pp. 280–282.
16. Mironenko V. N, Butrin V. N, Vasenev V. V. et al. Kompaktirovanie poroshkovykh kompozitov Al – Si s intellektualno upravlyaemym nagrevom (Compacting of powder composites Al –Si with intellectually controlled heating). Trudy mezhdunarodnoy konferentsii: Teoriya i praktika tekhnologii kompozitov (Proceedings of international conference: Theory and practice of composite technology). Moscow : Znanie, 2009. pp. 169–175.
17. GOST 8.018–2007. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Gosudarstvennaya poverochnaya skhema dlya sredstv izmereniy temperaturnogo koeffitsienta lineynogo rasshireniya tverdykh tel v diapazone temperatury ot 90 do 1800 K (State Standard 8.018–2007. State system for ensuring the uniformity of measurements. State verification schedule for means of LTEC measurements of solid substances in temperature range from 90 to 1800 K). Introduced: 2008–01–01. Moscow : Publishing House of Standards, 2008. 8 p. (in Russian)
18. Samsonov G. V., Kosolapova T. Ya., Domasevich L. T. Svoystva, metody polucheniya i oblasti primeneniya tugoplavkikh karbidov i splavov na ikh osnove (Properties, methods of obtaining and areas of application of refractory carbides and alloys on their basis). Kiev : Naukova dumka, 1974. 208 p.

Language of full-text русский
Полный текст статьи Получить
Назад