Название |
Flotation of carbonaceous material with reagents based on acetylene alcohols |
Информация об авторе |
National University of Science and Technology — MISIS, Moscow, Russia:
Yushina T. I., Candidate of Engineering Sciences, Acting Head of Mineral and Waste Material Processing and Treatment Department, yuti62@mail.ru Popova K. S., Candidate for a Master’s Degree, Mineral and Waste Material Processing and Treatment Department, pk7-77@mail.ru
Innovation Resource Ltd, Moscow, Russia: Malyshev O. A., Candidate of Engineering Sciences, Chief Executive Officer, malyshev@innores.ru
Shchelkunov S. A., Candidate of Chemical Sciences, Chemistry Project Manager, shchelkunov@innores.ru |
Реферат |
One of the key indexes of enhanced efficiency of carbonaceous material flotation process is the search for new reagents and the analysis of their adsorption and flotation capacities towards improvement of flotation performance at reduced power consumption per unit end product owing to increased recovery of valuable components in purposive concentrates. The article describes test data on using reagents of DMIPEK, which is dimethyl(isopropenylethynyl)carbinol, and DK-80 with a view of enhancing flotation of coal slurry and nano-carbon material. Structural features of carbonaceous material and mechanism of its interaction with acetylene alcohols are discussed. Reagents used in coal flotation and issues of flotation of finely dispersed coal are considered. The flotation tests on different grade coal from the Kuznetsk Coal Basin show an increase up to 12% in recovery and yield of valuable components in concentrate as compared with the common reagents. Moreover, the flotation rate becomes 2 times higher. With regard to bonding between DMIPEK and DK-80 reagents and carbonaceous material molecules, the interaction between the reagents, carbonaceous matter and froth bubble is modeled. DMIPEK and DK-80 reagents based on acetylene alcohols have proved the universality and efficiency in flotation of carbonaceous material. Their feature is conditioned by the presence of acetylene and ethylene bonds in the structure, which allows maintaining strong -bonds. Also, the article illustrates feasibility of flotation in separation of carbon nanotubes from ferriferous manganese catalysts using aliphatic and acetylene alcohols. The mechanisms of flotation to separate carbon nanotubes from natural ferriferous manganese ore used as a catalyzing composite with carbon nanotubes grown on its surface are discussed. The most efficient collecting agent and frother in flotation of carbon nanotubes is DK-80 reagent, enabling recovery of 85–92% of carbon nanotubes in froth product.
This study has been carried out in the framework of Fundamental and Applied Research and Development program No. 816, under Government Assignment No. 2014/113. The authors appreciate participation of I. O. Krylov, Candidate of Engineering Sciences, Mineral and Waste Material Processing and Treatment Department, in this study. |
Библиографический список |
1. Chanturiya V. A., Vaysberg L. A., Kozlov A. P. Prioritetnye napravleniya issledovaniy v oblasti pererabotki mineralnogo syrya (Promising trends in investigations aimed at allround utilization of mineral raw materials). Obogashchenie Rud = Mineral processing. 2014. No. 2. pp. 3–9. 2. Ryabov Yu. V., Delitsyn L. M., Vlasov A. S., Borodina T. I. Flotatsiya ugleroda iz zoly unosa Kashirskoy GRES (Carbon flotation of Kashir TPP fly ash). Obogashchenie Rud = Mineral processing. 2013. No. 4. pp. 35–39. 3. Kondratev S. A., Ryaboy V. I. Otsenka sobiratelnoy sily ditiofosfatov i ee svyaz s selektivnostyu izvlecheniya poleznogo komponenta (Dithiophosphates collecting ability estimation and its relationship to selectivity of valuable component recovery). Obogashchenie Rud = Mineral processing. 2015. No. 3. pp. 25–30. DOI: 10.17580/or.2015.03.04 4. Chanturiya V. A. Novye tekhnologicheskie protsessy kompleksnogo izvlecheniya tsennykh komponentov iz mineralnogo syrya: sovremennoe sostoyanie i osnovnye napravleniya razvitiya (New technologies of comprehensive recovery of valuable components from minerals: Current status and further progress). Geologiya rudnykh mestorozhdeniy = Geology of Ore Deposits. 2007. Vol. 49, No. 3. pp. 235–242. 5. Abramov A. A. Teoreticheskie osnovy sozdaniya innovatsionnykh tekhnologiy flotatsii. Ch. VI. Teoreticheskie osnovy povysheniya selektivnosti deystviya reagentov-penoobrazovateley pri flotatsii (Theory of creation of innovation flotation technologies. Part VI. Theory of increasing of selectivity of activities of reagents-frothers during the flotation). Tsvetnye Metally = Non-ferrous metals. 2013. No. 11. pp. 34–39. 6. Schmidt M. W., Baldridge K. K., Boatz J. A. et al. The General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry. 1993. Vol. 14(11). pp. 1347–1363. 7. Muhammad Musaddique Ali Rafique, Javed Iqbal. Production of Carbon Nanotubes by Different Routes — A Review. Journal of Encapsulation and Adsorption Sciences. 2011. Vol. 1. pp. 29–34. 8. Klassen V. I. Nevskaya V. A. O deystvii reagentov penoobrazovateley-sobirateley pri flotatsii uglya v prisutstvii tonkikh shlamov (About the influence of foamer-collector agents during the coal flotation in presence of thin slimes). Izvestiya AN SSSR = Reports of USSR Academy of Sciences. 1960. No. 6. 9. Shubov L. Ya., Ivankov S. I. Zapatentovannye flotatsionnye reagenty (Patented flotation reagents). Moscow : Nedra, 1992. 362 p. 10. Shchelkunov S. A., Malyshev O. A. Dimetil(izopropeniletinil) karbinol – effektivnyy neionogennyy sobiratel-vspenivatel (Dimethyl(isopropenyl acetenyl)carbinol is an effective nonionized frothing collector). Izvestiya vuzov. Tsvetnaya metallurgiya = UniversitiesProceedings. Nonferrous Metallurgy. 2008. No. 3. pp. 7–12. 11. Melik-Gaikazyan V. I., Emelyanov V. M., Emelyanova N. P., Moiseev A. A., Emelyanov V. V., Yushina T. I. Investigation into the Froth Flotation and Selection of Reagents on the Basis of the Mechanism of Their Action : Report 2. A Comparison of Flotation Properties of Millimeter, Micrometer, and Nanometer Bubbles Based on Equations of Capillary Physics Part One. Russian Journal of Non-Ferrous Metals. 2011. Vol. 52, No. 6. pp. 329–336. 12. Shchelkunov S. A., Malishev O. A., Yushina T. I., Dunaeva V. N. Flotation properties of additional collectors, foaming agents based on acetylenic alcohols. Non-ferrous Metals. 2015. No. 2. pp. 3–10. 13. Kurkov A. V., Pastukhova I. V. Novye podkhody dlya vybora flotatsionnykh reagentov dlya obogashcheniya kompleksnykh rud slozhnogo sostava (New approaches for the choice of flotation agents for concentration of complex ores). Novye tekhnologii obogashcheniya i kompleksnoy pererabotki trudnoobogatitelnogo prirodnogo i tekhnogennogo mineralnogo syrya : materialy Mezhdunarodnogo soveshchaniya «Plaksinskie chteniya – 2011», Verkhnyaya Pyshma, 19–24 sentyabrya 2011 (New technologies of concentration and complex processing of complex natural and technogenic mineral raw materials : materials of International meeting “Plaksin readings – 2011”, Verkhnyaya Pyshma, September 19–24, 2011). pp. 33–36. 14. Arsentev V. A., Gorlovskiy S. I., Ustinov I. D. Kompleksnoe deystvie flotatsionnykh reagentov (Complex influence of flotation agents). Moscow : Nedra, 1992. 160 p.
15. Sabanova M. N., Gusev A. A., Shchelkunov S. A., Malyshev O. A. Rezultaty ispolzovaniya reagenta «DMIPEK» pri flotatsionnom obogashchenii mednykh i medno-tsinkovykh rud (The results of «DMIPEK» reagent application in flotation benefication of copper and copper-zinc ores). Obogashchenie Rud = Mineral processing. 2012. No. 5. pp. 33–34. 16. Yushina T. I., Krylov I. O., Epikhin A. N., Dunaeva V. N. Ispolzovanie prirodnoy zhelezomargantsevoy rudy v kachestve katalizatora dlya poucheniya nanotrubchatogo uglerodnogo materiala. Sovremennye tendentsii tekhnicheskikh nauk : materialy III Mezhdunarodnoy nauchnoy konferentsii (Usage of natural iron-manganese ore as a catalyst for obtaining of nanopipe carbon material. Modern trends of technical sciences : materials of the III International scientific conference). Kazan : Molodoy uchenyy, 2014. pp. 84–87. 17. Krylov I. O., Epikhin A. N., Yushina T. I., Strokov A. A. Rasshirenie resursnoy bazy marganetssoderzhashchego syrya na osnove ispolzovaniya rud okislennogo tipa v teploenergetike i proizvodstve nanomaterialov (Expansion of the magnesium resource base by introducing oxide-bearing ore in heatpower engineering and nano-manufacturing). Gornyi Zhurnal = Mining Journal. 2014. No. 12. pp. 70–74. 18. Liangti Qu, Kyung Min Lee, Liming Dai. Functionalization and application of carbon nanotubes. Carbon nanotechnology. Elsevier, 2006. Part 7. рр. 155–234. 19. Polushin S. G., Evlampieva N. P., Ryumtsev E. I. Sposob vydeleniya uglerodnykh nanotrubok iz uglerodsoderzhashchego materiala (Method of release of carbon nanopipes from carbon-bearing material). Patent No. 2239673 D01F9/12. Applied: 07.05.2003. Published: 10.11.2004. 20. MacKenzie K., Dunens O., Harris A.T. A review of carbon nanotube purification by microwave assisted acid digestion. Separation and purification Technology. 2009. Vol. 66. рр. 209–222. |