Журналы →  Tsvetnye Metally →  2017 →  №6 →  Назад

BENEFICATION
Название Heap biooxidation of the off-balance gold-sulfide and polymetallic ores and final tailings
DOI 10.17580/tsm.2017.06.03
Автор Seleznev A. N., Epiforov A. V., Emelyanov Yu. E., Balikov S. V.
Информация об авторе

Irkutsk Research Institute of Precious and Reare metals and Diamonds, Irkutsk, Russia:
A. N. Seleznev, Junior Researcher, e-mail: lost.ofp@gmail.com
A. V. Epiforov, Senior Researcher, e-mail: epiforov@irgiredmet.ru
Yu. E. Emelyanov, Leading Researcher
S. V. Balikov, Chief Researcher

Реферат

Heap biooxidation is the cheapest option to treat processing plants tailings and refractory ores containing non-ferrous and precious metals and sulfides. The tailings of copper ore processing (sample #1), the tailings of sulfide coppernickel ore processing (sample #2) and double refractory gold-bearing ore (sample #3) were studied. Heap biooxidation tests used the autotrophic microorganisms Аcidithiobacillus thiooxidans and Аcidithiobacillus ferrooxidans. The duration of heap biooxidation tests for samples 1, 2 and 3 was 6, 10 and 16 months, respectively. The recoveries of copper and zinc to the solution during heap biooxidation of sample #1 were 68% and 71%, respectively. The recoveries of copper and nickel from sample #2 were 50% and 75%, respectively. The solution obtained by heap biooxidation of sample #1 contained 0.74 g/l copper and 0.97 g/l zinc. Cementation on zinc was used for copper recovery from the productive solution. Copper recovery was 98%, and copper concentrate containing 54.3% copper were obtained. Zinc precipitation from the solution used sodium carbonate. Zinc concentrate contained 44.8% of zinc. The recovery of zinc was 98%. The solution obtained by heap biooxidation of sample #2 contained 4.3 g/l of nickel and 0.85 g/l of copper. Sodium carbonate and sodium sulphide were compared for this solution processing. A collective nickel-copper carbonate concentrate content of 16.1% nickel and 4.3% copper was obtained. Selective nickel concentrate (26.1% nickel, 5.5% copper) and copper concentrate (38.4% copper, 5.3% nickel) were obtained using sodium sulphide. Biooxidation tailings of samples 1 and 3 were leached using an alkaline sodium cyanide solution. The recovery of gold from sample #1 and sample #2 was 65% and 85%, respectively.

Ключевые слова Gold-bearing ore, sulfide copper-nickel ore, pyrite tailings, nickel, zinc, copper, gold, heap biooxidation, precipitation of base metals, heap leaching
Библиографический список

1. J. A. Brierley, D. L. Hill. Biooxidation process for recovery of gold from heaps of law-grade sulfidic and carbonaceous sulfidic ore materials. Newmont Gold Co. Patent USA 5246486, IPC С 22 В 11/00. Applied: 18.10.92. Published: 21.09.93.
2. Minglin Wu., Alin Li. Industrialized heap bioleaching research on the secondary sulphide ore in Yulong copper mine. Biohydrometallurgy: Biotech key to unlock mineral recources value. 19th International Biohydrometallurgy Symposium (IBS). Changsha. 2011. Vol. 2. pp. 760–763.
3. Helen R. Watling, Denis W. Shiers, David M. Collinson. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition. Microorganisms. 2015. No. 3. pp. 364–390. doi: 10.3390/microorganisms3030364.
4. Emelyanov Yu. E., Shketova L. E., Gudkov S. S., Kopylova N. V., Verkhozina V. A. Heap biooxidation of goldcontaining ores. Gornyi Zhurnal. 2012. No. 8. pp. 108–111.
5. Shketova, L. E., Seleznev A. N. The use of biogeotechnology during gold recovery from sulphide carbonaceous ores. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. 2014. No. 1. pp. 34–42.
6. Seleznev A. N., Balikov S. V., Shketova L. Ye., Kopylova N. V. Biogeotechnology application in the recovery of metals from the wastes of proces sing plants. 21st International Biohydrometallurgy Symposium (IBS). 2015. Bali. pp. 688–693.
7. Mikhaylova A. N., Mineev G. G., Gudkov S. S. Integrated laboratory tests of sulfide gold ore biochemical oxidation under heap leaching. Vestnik IrGTU. 2012. No. 6. pp. 124–127.
8. Gudkov S. S., Yemelianov Y. Ye., Shketova L. Ye., Mikhailova A. N. The study on heap bioleaching for gold recovery from refractory ores using noncyanide lixiviant. 19th International Biohydrometallurgy Symposium (IBS). 2011. Changsha. Vol. 2. pp. 813–817.
9. Gudkov S. S., Shketova L. E., Mikhaylova A. N. Bacterial leaching of refractory ores and concentrates. Gornyi Zhurnal. 2011. No. 4. pp. 27–29.
10. Livesey-Goldblatt E. Bacterial leaching of gold, uranium, pyrite bearing compacted mine tailing slimes. 6th International Biohydrometallurgy Symposium (IBS). Vancouver. 1985. pp. 89–96.
11. Olson G. J., Brierley J. A., Brierley C. L. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Microbiol Biotechnol. 2003. pp. 249–257.
12. Gunn M., Tittes P., Harvey P., Carretero E. Laboratory and Demonstration-Scale Operation of the Caraiba Heap Leach using GEOCOAT. Hydroprocess 2008. Arizona. 2008. pp. 121–125.
13. Soto P., Acosta M., Tapia P., Contador Y., Velásquez A., Espoz C., Pini lla C., Galleguillos P., Demergasso C. From mesophilic to moderate thermophilic populations in an industrial heap bioleaching process. Advanced Materials Research. 2013. Vol. 825. pp. 376–379. doi: 10.4028/www.scientific.net/AMR.825.376
14. Gentina J. C., Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology. 2013. Vol. 16, No. 3. doi: 10.2225/vol16-issue3-fulltext-12
15. Dunne R., Levier M., Acar S., Kappes R. Keynote Address: Newmont’s contribution to gold technology. World Gold Conference. — Johannesburg : The Southern African Institute of Mining and Metallurgy. 2009. pp. 221–230. Available at : http://www.saimm.co.za/Conferences/WorldGold2009/221-230_Dunne.pdf (accessed: 15.11.2016)
16. Tempel K. Commercial biooxidation challenges at Newmont’s Nevada operations. SME Annual Meeting. 2003. Feb. 24–26, Cincinnati, Ohio.
17. Halinen A.-K. Heap Bioleaching of Low-grade Multimetal Sulphidic Ore in Boreal Conditions. Tampere University of Technology. 2015. Publication. Vol. 1347. 71 p.
18. Talvivaara Official Site. Available at: http://www.talvivaara.com/files/talvivaara/Q1-3_2014/Talvivaara%20Q1%202014_28%2005%202014.pdf (accessed: 26.05.2017)
19. Igrevskaya L. V. Finland nickel industry in “Norilsk Nickel” ores. Information and Analytical Center “Mineral”. Available at: http://www.mineral.ru/Analytics/worldevents/111/87/index.html (accessed: 26.05.2017)
20. Johnson D. B. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecology. 1998. Vol. 27. pp. 307–317.
21. Latorre M., Ehrenfeld N., Cortés M. P., Travisany D., Budinich M., Aravena A., González M., Bobadilla-Fazzini R. A., Parada P., Maass A. Global transcriptional responses of Acidithiobacillus Ferrooxidans wenelen under different sulfide Minerals. 21st International Biohydrometallurgy Symposium (IBS) 2015. Bali. pp. 425–429.
22. Lobanov D. P., Bernikova L. M. Microbiological leaching of metals : tutorial. Moscow : MGRI, 1985. 171 p.
23. Li Kai, Yuguang Wang, Lijuan Zhang, Chen Zhu, Mao Feng, Hongbo Zhou. Effect of particle size on the column bioleaching of Tibet Yulong Copper Ore. 21st International Biohydrometallurgy Symposium (IBS) 2015. Bali. pp. 240–243.
24. A. E. Gross, J. S. Gomer. Bacterial-assisted heap leaching of ores. Patent 5196052 US. Filed.: 19.06.92. Publ.: 23.03.93.
25. Mingqing Huang, Yiming Wang, Shenghua Yin, Aixiang Wu. Enhanced Column bioleaching of copper sulfides by forced Aeration. 21st International Biohydrometallurgy Symposium (IBS). 2015. Bali. P. 275–281.
26. Leonov S. B., Mineev G. G., Zhuchkov I. A. Hydrometallurgy. Part 1. Ore preparation and leaching : tutorial. Irkutsk : Izdatelstvo IrGTU, 1998. 703 p.
27. Shketova L. E. Investigation of biotechnological processing of sulfide clayey gold-bearing ore : Dissertation ... of Candidate of Engineering Sciences: 05.16.02. Irkutsk : IrGTU, 2013. 145 p.

Language of full-text русский
Полный текст статьи Получить
Назад