Название |
Supergene oxide-silicate nickel deposits: mineral-geochemical composition and peculiarities of processing |
Информация об авторе |
Saint Petersburg Mining University, Saint-Petersburg, Russia:
Talovina I. V., Professor, Doctor of Geological-Mineralogical Sciences, Head of the Department of Historical and Dynamic Geology, talovina@spmi.ru Alexandrova T. N., Professor, Doctor of Technical Sciences, Head of the Mineral Processing Department
TU Bergakademie Freiberg, Freiberg, Germany: Heide G. G., Professor, Doctor of Technical Sciences, Head of the Chair of Mineralogy, Director of the Institute of Mineralogy
Lieberwirth H., Professor, Doctor of Technical Sciences, Head of the Chair of Mineral Processing Machines, Director of the Institute of Mineral Processing Machines |
Реферат |
In Russia oxide-silicate supergene nickel deposits require a revision of technological schemes of extraction of useful components in order to improve profitability and the integrated use of the objects of the mineral resource base in the developed mining province of the Ural region. The most important industrial mineral of supergene nickel ore is so-called garnierite. The X-ray and other data suggest that this substance includes several mineral phases, mostly silicates and hydrosilicates of nickel and magnesium. We studied this substance in еру ores of the Cheremshan, Sinar, Elov, Sakhara, and Buruktal deposits based on chemical, thermal, and X-ray phase analysis data. The analysis of the mineralogical and geochemical composition of the ores also shows that these ores meet the criteria of selective disintegration. The different characteristics of the rocks and ores in supergene deposits call for a selective processing of the various ore containing constituents to make metal production efficient. In particular, the wet and sticky laterites should be separated from solid serpentinites, allowing a separate processing of both. Since the transition zone, containing both materials may be rather wide, an efficient separation technology shall be applied. Then the serpentinite rocks can be further processed separately from the clayey laterites. Analysis of the obtained results shows that the use of vertical roller mill saves 25% of the collector or allows achieving the same recovery in a third of time at the same reagent costs.
Research is executed by a grant from the Russian Science Foundation (project No. 15-17-00017). |
Библиографический список |
1. Igrevskaya L. V. Alignment of forces in nickel industry of the world. Tsvetnye Metally. 2008. No. 12. pp. 13–17. 2. Igrevskaya L. V. On the problem of raw materials for nickel enterprises of Ural: possible solutions. Gornyy informatsionno-analiticheskiy byulleten. 2007. No. 5. pp. 90–96. 3. Mikhailov B. M. Prospects of development of raw material base of the nickel industry in the Urals. Regional geology and metallogeny. 2002. No. 15. pp. 97–109. 4. Talovina I. V. Geochemistry of the Ural oxide-silicate nickel deposits. St. Petersburg Mining University. 2012. 270 p. 5. Lazarenkov V. G., Talovina I. V., Petrov S. V., Volodin V. I. Platinum metals in the supergene nickel deposits and pros-pects for industrial extraction. Saint Petersburg : Nedra, 2006. 188 p. 6. Kozlov A. P., Chanturiya V. A., Sidorov E. G., Tolstykh N. D., Telegin Yu. M. Large-volume platinum ore deposits in zonal mafic-ultramafic complexes of the Ural-Alaskan type and the outlook for their development. Geologiya rudnykh mestorozhdeniy. 2011. Vol. 53, No. 5. pp. 419–437. 7. Gayfutdinova (Duryagina) A. M. Specificities of geological construction of platiniferous weathering crusts at Svetloborsky and Nizhnetagilsky massif, Central Ural. Problems of soil mastering in the XXI century from the point of view of youngsters: materials of international scientific school. Moscow, 2012. Vol. 2. pp. 37–39. 8. Galiґ S., Soler J. M., Proenza J. A., Lewis J. F., Cama J. and Tauler E. Ni enrichment and stability of al-free garnierite solid-solutions: a thermodynamic approach. Clays and Clay Minerals. 2012. Vol. 60, No. 2. pp. 121–135. 9. Aleksandrova T. N., Litvintsev V. S., Litvinova N. M., Yatlukova N. G. Mechanical activation in the process of ore dressing. Gornyi Zhurnal. 2006. No. 6. p. 95. 10. Litvinova N. M., Gurman M. A., Rasskazova A. V., Alexandrova T. N. Research of mineralogical - technological peculiarities of refractory gold-bearing ORES. Eurasian Mining. 2014. No. 1. pp. 28–33. 11. Vaysberg L. A., Kameneva E. E. Changes in rock structure with cyclic freezing and thawing. Obogashchenie Rud. 2015. No. 2. pp. 28–31. DOI : 10.17580/or.2015.02.06 12. Popov O. Beitrag zur mathematisch-petrographischen Gefügecharakterisierung für die Beurteilung der Festgesteine hinsichtlich ihrer Aufbereitung und ihrer Produkteigenschaften. Dissertation: Technische Universität Bergakademie Freiberg, Fakultät für Maschinenbau, Verfahrens – und Energietechnik. 2007. 196 p. 13. Hesse M., Popov O., Lieberwirth, H. Increasing efficiency by selective comminution. Minerals Engineering. 2017. pp.103–104. 14. Hesse M., Popov O., Lieberwirth H. Selective comminution – an example of quantitative microstructural analysis as support in ore beneficiation. Selective comminution and QMA. SAG Conference. Vancouver. 2015, 21 p. 15. Müller H. Beitrag zur systematischen Untersuchung von Reinigungs – und Läuterprozessen. PhD thesis. Technische Universität Bergakademie Freiberg, 2012. 16. Gerold С. Comminution of ores in Loesche Mills “Technology for the future. Presentation. Loesche Symposium 2010. 17. Smirnov Yu. Vertical mills Vertimill®: efficient and affordable. Gornaya promyshlennost. 2013. No. 3 (109). 82 p. |