Journals →  Tsvetnye Metally →  2018 →  #7 →  Back

ArticleName Improvement of the technology for processing gold-containing concentrates
DOI 10.17580/tsm.2018.07.06
ArticleAuthor Trotsenko I. G., Gerasimenko T. E., Evdokimov S. I.

North Caucasian Mining and Metallurgical Institute (State Technological University), Vladikavkaz, Russia:
I. G. Trotsenko, Associate Professor of the Department of Metallurgy of Non-Ferrous Metals, e-mail:
T. E. Gerasimenko, Head of the Department of Intellectual Property, e-mail:
S. I. Evdokimov, Associate Professor of the Department of Mineral Processing, e-mail:


Small mining enterprises are striving to create on-site facilities for the processing of gold-containing concentrates with the production of the final highly liquid commodity products in the form of Dore alloy ingots. Complex hardware design and high cost of metallurgical methods for processing of gold-containing concentrates do not allow to recommend them for such enterprises. A competitive technology for preparing graded gold for smelting is a magneto-liquid separation with preliminary separation of non-ferrous sulfides and iron by vacuum-thermal sublimation (sublimation). An experimental sample of mini concentrate processing mill (CPM) of “Priisk”, which circuit diagram of apparatus includes equipments sequentially installed for separating the gold: vacuum-thermal opening reactor → centrifugal disintegrator → magnetic separator → magnetic-liquid separator. At a temperature of 400–450 oC, arsenopyrite passes into low-toxic sublimates, and at 530 oC the antimonite is almost completely condensed in the form of antimony sulphide. Full sublimation of galena is achieved at a temperature of 800 oC, and sphalerite at 1000 oC. Lead is mainly sublimed in sulphide form, and zinc is in the form of metal vapors. In the non-volatile residue, the sublimation of pyrite at 460–550 oC contains 3–5% of the undecomposed mineral, the rest is diagnosed as magnetic pyrrhotite. To decrease the specific sublimation rate, sulphides can be arranged in a series: galena, antimonite, arsenopyrite, sphalerite. When testing the mini-CPM “Priisk” at a temperature of 600 оС corresponding to the working zone of a vacuum thermal reactor and a pressure of 7·10–4 Pa, the weight of gold-containing concentrates was reduced approximately by 2 times. The loss of gold during the magnetic-liquid separation of the concentrates was no more than 1.0%.
Specific capital costs and operating costs for finishing the concentrates according to the developed technology enabled to conduct the process more economically. The article was prepared with the support of the Grant Agreement No. 14.577.21.0142 (RFMEFI57714X0142).

keywords Finishing of concentrates, vacuum-thermal sublimation, centrifugal disintegration, magnetic separation, magnetic-liquid separation, comparison of technologies, economic efficiency

1. Dementeva N. A., Byvaltsev V. Ya. Flotational and gravitational methods for refining of gold-containing concentrates. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 1999. No. 5. pp. 12–15.
2. Panchenko A. F., Khmelnitskaya O. D., Mullov V. M., Lanchakova O. V., Zheltova L. M. Peculiarities of processing rich gold-silver-containing flotation concentrates. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 1999. No. 5. pp. 15–26.
3. Dementeva N. A., Byvaltsev V. Ya. Extraction of the gold concentrate from cash vents of placer gold mining. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 1999. No. 5. pp. 26, 27.
4. Voyloshnikov G. I., Voyloshnikova N. S., Panchenko A. F., Aslakhanov A. A., Barchenkov V. V. Introduction of coal-sorption technology for gold recovery from flotation concentrates of the Samartin Mill. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 1999. No. 5. pp. 27–29.
5. Zashikhin А. V., Guryanov А. Ye., Аnanenko K. Ye. Final gold concentration stage equipment engineering and operating experience. Obogashchenie Rud. 2013. No. 6. pp. 8–11.
6. Algebraistova N. K., Samorodskiy P. N., Kolotushkin D. M., Prokopyev I. V. Technology of gold recovery from gold-bearing technogenic raw materials. Obogashchenie Rud. 2018. No. 1. pp. 33–37. DOI: 10.17580/or.2018.01.06
7. Oleynikova N. V. Scientific substantiation and development of technological solutions with reference to processing of mineral and secondary raw materials on the basis of the processes of reduction of heavy non-ferrous metals by intrinsic sulfur sulphide. Dissertation of Doctor of technical sciences. Krasnoyarsk : Krasnoyarsk Institute of Railway Transport, 2012. 360 p.
8. Rajput S., Pittman Jr. C. U., Mohan D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science. 2016. Vol. 468. pp. 334–346.
9. Drozdov A. S., Ivanovski V., Avnir D., Vinogradov V. V. A universal magnetic ferrofluidinanomagnetite stable hydrosol with no added dispersants and at neutral pH. Journal of Colloid and Interface Science. 2016. Vol. 468. pp. 307–312.
10. Yang H., Zhang H., Peng J., Zhang Y., Du G., Fang Y. Smart magnetic ionic liquid-based pickering emulsions stabilized by amphiphilic Fe3O4 nanoparticles: Highly efficient extraction systems for water purification. Journal of Colloid and Interface Science. 2017. Vol. 485. pp. 213–222.
11. Laurent S., Dutz S., Hateli U. O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science. 2011. Vol. 166, No. 1–2. pp. 8–23.
12. Dallas P., Kelarakis A., Sahore R., Di Salvo F. J., Livi S., Giaunelis E. P. Self-suspended permanent magnetic FePtFerrofluids. Journal of Colloid and Interface Science. 2013. Vol. 407. pp. 1–7.
13. Pearce C. I., Qafoku O., Liu J., Arenholz E., Heald S. M., Kukkadapu R. K., Gorski C. A. Synthesis and properties of titanomagnetite (Fe3–xTiO4) solid-state Fe (II/III) redox system. Journal of Colloid and Interface Science. 2012. Vol. 387. pp. 24–28.
14. Trebukhov S. A., Marki I. A., Nitsenko A. V., Trebukhov A. A. Vacuumthermal demercuration of waste coal sorbents of gold mining enterprises. Tsvetnye Metally. 2016. No. 9. pp. 47–52.
15. Isakova R. A., Khrapunov V. E., Volodin V. I. Vacuum processing technologies of polymetallic raw materials and metals fining: development and future prospects. Tsvetnye Metally. 2012. No. 10. pp. 69–73.
16. Khrapunov V. Ye., Isakova R. A. Processing of persistent gold-arsenic concentrates with vacuum application. Alma-Ata : NITs “Gylym”, 2002. 249 p.
17. Loleyt S. I., Ilchenko T. A., Kalmykov Yu. M. et al. Pyrometallurgical method of extraction of precious metals from gravity concentrates. Patent RF, No. 2099435. Published: 1997.
18. Karpukhin A. I., Potapova A. I., Stelkina I. I., Rybkin S. G. A method for processing graded gold. Patent RF, No. 2052523. Published: 1996.
19. Karpukhin A. I., Stelkina I. I., Rybkin S. G. A method for processing graded gold. Patent RF, No. 2112062. Published: 1998.
20. Gulyashinov A. N., Paleev P. L., Antropova I. G., Khanturgaeva G. I. Method of processing of gold-bearing arsenopyrite ores and concentrates. Patent RF, No. 2309187. Published: 2007.
21. Abdusalyamova M. N., Gadoev S. A., Kabgov Kh. B., Solozhenkin P. M. Vacuum distillation of antimony-mercury gold-containing concentrates. Doklady AN Respubliki Tadjikistan. 2011. Vol. 54. No. 1. pp. 74–79.
22. Bulatov K. V. Melting-conversion of copper-lead-zinc concentrates. Dissertation of candidate of technical sciences. Ekaterinburg : Uralskiy federalnyy universitet imeni pervogo Prezidenta Rossii B. N. Eltsina, 2015. 140 p.
23. Evdokimov S. I., Panshin A. M., Solodenko A. A. Minerallurgy. In 2 volumes, Vol. 1. Gold: Theory and Essences. Vladikavkaz : OOO NPKP “MAVR”, 2010. 960 p.
24. Evdokimov S. I., Galachieva S. V., Puzin V. S., Evdokimov V. S., Tebloeva D. V. Development of a technological complex for washing sand. Glass and Ceramics. 2016. Vol. 73, Iss. 7–8. pp. 288–292.
25. Panshin A. M., Evdokimov S. I. Application of a method of magnetichydronic separation at gold-containing placer preparation. Gornyi Zhurnal. 2010. No. 1. pp. 75–77.
26. Chanturiya V. A., Bunin I. Zh., Lunin V. D. Non-Traditional Methods of Disintegrations and Liberating Resistant Gold-Bearing Minerals. Theory and Technological Results. Eurasian Mining. 2006. No. 1. pp. 36–43.
27. Antropova I. G., Dambaeva A. Yu. Method of sulfidation of difficult-todigest oxidized minerals of lead and zinc in an atmosphere of water vapor. Fiziko-khimicheskie problemy razrabotki poleznykh iskopaemykh. 2015. No. 1. pp. 155–160.

Language of full-text russian
Full content Buy