Название |
Modern processing techniques for copper-nickel sulphide concentrates: A review |
Информация об авторе |
L. Sh. Tsemekhman, Member of the Editorial Board at Tsvetnye Metally, Doctor of Technical Sciences, Professor, e-mail: lev.tsem1@gmail.com
Ural Protsess Inzhiniring Kompaniya LLC, Ekaterinburg, Russia: V. M. Paretskiy, Visiting Professor, Doctor of Technical Sciences |
Реферат |
Conventional processing of copper-nickel ores involves concentration and flotation resulting in the production of copper-nickel sulphide concentrate, which is then subjected to hydro- or pyrometallurgical processes. At the same time, hydrometallurgical processes failed to find a wide application. This paper considers various pyrometallurgical processes employed by producers in Canada, USA, Australia, China, South Africa and Russia. The authors analyse the processes of electric smelting of raw, briquetted and roasted concentrates with further electric smelting of the resultant products versus autogenous smelting of concentrates. A variety of autogenous processes are examined. According to the authors’ observations, the most advanced process for coppernickel concentrates at the moment includes smelting in a dual-zone Vanyukov furnace, which produces a high-grade matte with the iron concentration of 6–8%, a low-grade waste slag and a single stream of high-sulphur gas. The matte then goes to the hydrometallurgical circuit. This technology saves the need for converter processes or moving smelts in ladles and does not produce low-grade sulphur-containing gases. |
Библиографический список |
1. Toxic Reduction Plan Summaries. Copper Cliff Smelter Complex. Available at: http://www.vale.com/canada/EN/aboutvale/communities/health-safety-environment/our-environment/environmental-reporting/toxics-reduction-act/Documents/Smelter-TRA-Plan-Summary.pdf. 2. Queneau P. E., Marcuson S. W. Oxygen Pyrometallurgy at Copper Cliff — A Half Century of Progress. JOM. 1996. Vol. 48, No. 1. pp. 14–21. 3. Crundwell F. K., Moats M., Ramachandran V., Robinson T., Davenport W. D. Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals. Amsterdam : Elsevier, 2011. 4. Xstrata Nickel — Falconbridge. Sulphuric acid on the WebTM. Available at: http://www.sulphuric-acid.com/Sulphuric-Acid-on-the-Web/Acid%20Plants/Xstrata%20Nickel%20-%20Falconbridge.htm. 5. Tripathi N., Cours P., Mackey P., Kreuh M., Tisdale D. Advanced Metallurgical Modelling of Ni – Cu Smelting at Xstrata Nickel Sudbury Smelter. International Peirce-Smith Converting Centennial. San Francisco, 15–19 February 2009. Warrendale : TMS, 2009. pp. 251–262. 6. Schonewille R., Boissoneault M., Ducharme D., Chenier J. Update on Falconbridge’s Sudbury nickel smelter. Nickel and Cobalt 2005: Challenges in Extraction and Production. Calgary, Canada, 2005. pp. 479–498. 7. Thompson smelter, refinery closing in 2018. The Reminder. Available at: https://www.thereminder.ca/news/local-news/thompson-smelter-refineryclosing-in-2018-1.2119225. 8. Warner A. E. M., Diaz C. M., Dalvi A. D., Mackey P. J., Tarasov A. V., Jones R. T. JOM World Nonferrous Smelters. Survey. Part IV: Nickel: Sulfide. JOM. 2007. Vol. 59, No. 4. pp. 58–72. 9. Coetzee V. Common-Sense Improvements to Electric Smelting at Impala Platinum. Proceedings of the Southern African Pyrometallurgy 2006. Johannesburg, 5–8 March 2006. pp. 43–62. 10. Hundermark R., de Villiers B., Ndlovuilliers J. Process Description and Short History of Polokwane Smelter. Proceedings of the Southern African Pyrometallurgy 2006. Johannesburg, 5–8 March 2006. pp. 35–41. 11. Jacobs M. Process Description and Abbreviated History of Anglo Platinum’s Waterval Smelter. Proceedings of the Southern African Pyrometallurgy 2006. Johannesburg, 5–8 March 2006. pp. 17–28. 12. Abramov N. P., Ermakov G. P., Miroevskiy G. P., Onishchin B. P., Ezhov E. I. Nickel plants of the People’s Republic of China. Moscow : “Ore and Metals” Publishing House, 1998. 80 p. 13. Andrews R., Matusewicz R., Aspola L., Hughes S. Outotec's Ausmelt Top Submerged Lance (TSL) technology for the Nickel Industry. Ni – Co 2013. Berlin : Springer, 2013. pp. 315–323. 14. Recycling PGM’s at Stillwater Mining Company Mine Design, Operations & Closure Conference. Available at: https://mtech.edu/mwtp/2015_presentations/wednesday/greg-roset.pdf. 15. Makinen T., Taskinen P. State of the art in nickel smelting: direct Outokumpu nickel technology. Mineral Processing and Extractive Metallurgy Transactions of the Institutions of Mining and Metallurgy: Section C. 2008. Vol. 117, No. 2. pp. 86–94. 16. Kojo I. V., Jokilaakso A., Hanniala P. Flash smelting and converting furnaces: A 50 year retrospect. JOM. 2000. Vol. 52, No. 2. pp. 57–61. 17. 90 Years of Knowledge and Innovation. New Boliden. Available at: https://www.boliden.com/operations/about-boliden/bolidens-history. 18. Aspola L., Matusewicz R., Haavanlammi K., Hughes S. Outotec Smelting Solutions for the PGM Industry. Fifth International Platinum Conference “A catalyst for change”. Sun City, South Africa, 17–21 September 2012. pp. 239–250. 19. Jones R. T. СonRoast: DC arc smelting of dead-roasted sulphide concentrates. Third International Sulfide Smelting Symposium. Seattle, Washington, 17–21 February 2002. 20. Altushkin I. A., Korol Yu. A., Golov A. N. Innovations in copper metallurgy by the example of a realization of a reconstruction project of “Karabashmed” JSC. Part 1. Choice of a basic melting device. Tsvetnye Metally. 2012. No. 8. pp. 25–34. 21. Altushkin I. A., Korol Yu. A., Bakin A. V., Krasilnikov Yu. V. Innovations in copper metallurgy by the example of a realization of a reconstruction project of “Karabashmed” JSC. Part 2. Experience of “Ausmelt” furnace development. Tsvetnye Metally. 2012. No. 8. pp. 35–41. |