Журналы →  Gornyi Zhurnal →  2020 →  №3 →  Назад

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
Название Prospects for feasibility of processing of refractory copper–nickel ores and waste stockpiles
DOI 10.17580/gzh.2020.03.08
Автор Chernousenko E. V., Alekseeva S. A., Rukhlenko E. D., Mitrofanova G. V.
Информация об авторе

Mining Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia:

E. V. Chernousenko, Researcher, chern@goi.kolasc.net.ru
S. A. Alekseeva, Researcher
E. D. Rukhlenko, Leading Production Engineer
G. V. Mitrofanova, Leading Researcher, Candidate of Engineering Sciences

Реферат

The article presents the results of studies into selection of rational processing methods based on the analysis of the material composition and textural–structural features with a view to processing refractory and unpayable sulphide copper–nickel ores from the Kola Peninsula. For the ore of the mining-induced Allarechenskoe deposit, the mineralogical and petrographic characteristics of the initial bulk material with a particle size of –150 + 5 were studied; the relationship between the density of ore and its nickel and copper content has been established. The technological studies were carried out into the ore concentration by separation in heavy media at suspension density of 2.9 g / cm3 with production of coarse concentrate suitable for further metallurgical processing and coarse tailings. For ore sifting with a particle size of -5 mm, a scheme of fine-grained gravity concentration has been proposed. The material composition, grindability, features of sulphide shot decomposition and gravitational dressability of unpayable copper-nickel ore were investigated. A rational gravity pre-concentration scheme has been developed, which makes it possible to obtain a concentrated product with a nickel content of more than 0.4%, suitable for subsequent flotation concentration in the total charge at the dressing plant of the Kola GMK, and tailings. Based on mineralogical and technological studies into one of the types of refractory copper-nickel ore entering Kola MMC for processing, the optimal parameters of grinding and flotation have been developed, contributing to the increased recovery of nickel and copper in the concentrate while reducing their mass fraction in flotation tailings compared to traditional mode.

Ключевые слова Copper-nickel ore, unpayable ore, refractory ore, material composition, sulphide shots, liberation, gravity, flotation, reagents-dispensers, extraction
Библиографический список

1. Stolbov A. G., Saveleva S. B., Grin Yu. A. Prospects for sustainable development of the nickel industry of Russia in conditions of transition in the world economy to the new technological mode. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2016. Vol. 19, No. 2. pp. 528–535.
2. Gorlova O. E., Yun A. B., Sinyanskaya O. M., Medyanik N. L. Combined processing of dumped complex opper ores of the taskora deposit: process development and field trials. Tsvetnye Metally. 2018. No. 12. pp. 14–20. DOI: 10.17580/tsm.2018.12.02
3. Svetlov A. V., Kravchenko E. A., Selivanova E. A., Makarov D. V. Modeling of heap leaching of low grade copper-nickel ores and technogenic raw materials. Mineralogy of Technogenesis : Conference Proceedings. Miass, 2015. No. 16. pp. 80–94.
4. Yusupov T. S., Kirillova E. A., Shumskaya L. G., Isupov V. P., Lyakhov N. Z. Improvement of Flotation Enrichment of Copper-Nickel Ores Based on the Selective Destruction of Mineral Aggregates of High-Energy Impact. Chemistry for Sustainable Development. 2017. Vol. 25. No. 4. P. 422–428.
5. Dyachenko V. T., Mantsevich M. I., Bryukvin V. A., Tsybin O. I. Combined technology of processing of impregnated copper-nickel ores. Tsvetnye Metally. 2015. No. 2. pp. 25–28.
6. Miettunen H., Heiskanen K., Keiski R. L. A few aspects of the connections between ore mineralogy and flotation results at Hitura nickel mine in Finland. Mining, Metallurgy & Exploration. 2015. Vol. 32, Iss. 1. pp. 38–44.
7. Seleznev S. G. Dumps of the Allarechenskoe sulfide copper–nickel ore field – specificity and development problems : Dissertation … of Candidate of Geologo-Mineralogical Sciences. Ekaterinburg, 2013. 147 p.
8. Boltyrov V. B., Seleznev S. G., Storozhenko L. A. Optimal combination of methods of enrichment of sulfide copper-nickel ores of technogenic object “dumps of Allarechenskoe deposit”. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal. 2015. No. 11–3(42). pp. 113–117.
9. Svetlov A. V., Makarov D. V., Masloboev V. A. Possibilities of compact bioleaching of sub-standard copper-nickel ores and technogenic raw materials. Math Designer. 2016. No. 1. pp. 40–45.
10. Rakaev A. I., Chernousenko E. V., Rukhlenko E. D., Alekseeva S. A. Assessment of mineralogy and processability of final tailings in the Allarechenskoe field. Modern Integrated Processing of Ore and Unconventional Mineral Raw Materials (Plaksin’s Lectures – 2007) : International Scientific Conference Proceedings. Apatity : KNTs RAN, 2007. pp. 476–478.
11. Rakaev A. I., Chernousenko E. V., Alekseeva S. A. Assessment of mineralogy and processability of low-grade copper–nickel ore reserves. Advanced Dressing and Integrated Processing of Natural Minerals and Mining Waste Material (Plaksin’s Lectures – 2014) : International Conference Proceedings. Almaty : AO “Tsentr nauk o Zemle, metallurgii i obogashcheniya”, 2014. pp. 82–83.

12. Chernousenko E. V., Neradovsky Yu. N., Kameneva Yu. S., Vishnyakova I. N., Mitrofanova G. V. Increasing Efficiency of Pechenga Rebellious Copper-Nickel Sulphide Ore Flotation. Journal of Mining Science. 2018. Vol. 54, Iss. 6. pp. 1035–1040.
13. Likhacheva S. V., Neradovskiy Yu. N. Typification of sulfide mineral aggregates in disseminated ore of Pechenga. Innovative Integrated and Deep Processing of Mineral Raw Materials (Plaksin’s Lectures-2013) : International Conference Proceedings. Tomsk : Izdatelstvo TPU, 2013. pp. 64–67.
14. Yongjun Peng, Dengchao Liu, Xumeng Chen. Selective flotation of ultrafine nickel sulphide from serpentine in saline water by pluronic triblock copolymers. Innovative Processing for Sustainable Growth : Proceedings of the XXVI International Mineral Processing Congress. New Delhi, 2012.
15. Abramov A. A. Collection of proceedings : teaching aid. Vol. 7. Flotation. Reagents-collectors. Moscow : Gornaya kniga, 2012. 654 p.
16. Rakaev A. I., Neradovskiy Yu. N., Chernousenko E. V., Morozova T. A. Mineralogical and technological investigations of low-grade serpentinite copper-nickel ores, the Pechenga ore body. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. Vol. 12, No. 4. pp. 632–637.
17. Blatov I. A. Benefication of copper–nickel ores. Moscow : Ore and Metals Publishing House, 1998. 224 p.
18. Zhou Weiguang, Ou Leming, Feng Qiming, Zhang Guofan, Lu Yiping, Shi Qing, Chen Hao. Flotation of ultra-fine scheelite particles assisted by nanobubbles. Proceedings of the XXVIII International Mineral Processing Congress. Quebec, 2016.
19. Ahmadi Rahman, Khodadadi Darban Ahmad, Abdollahy Mahmoud, Fan Maoming. Nanomicrobubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology. 2014. Vol. 24, Iss. 4. pp. 559–566.
20. Manouchehri H. R., Farrokhpay S. Flotation of fine particles – is it the question of power input and bubble size within the cell? Proceedings of XXVIII International Mineral Processing Congress. Quebec, 2016.
21. Farrokhpay S., Filippov L. Challenges in processing nickel laterite ores by flotation. International Journal of Mineral Processing. 2016. Vol. 151. pp. 59–67.
22. Aruna V. A. J., Shende S. M. Floc-Flotation of Chalcopyrite from a Low Grade Cu–Zn ore. Proceedings of the International Seminar on Mineral Processing Technology. Chennai, 2006. pp. 265–269.
23. Algebraistova N. K., Makshanin A. V., Burdakova E. A., Markova A. S. Gold recovery from the tailings with the application of sinter flocculation process. GIAB. 2013. No. 12. pp. 56–60.
24. Vigdergauz V. E., Shrader E. A., Sarkisova L. M., Kuznetsova I. N. Fine-size wild lead flotation stimulation using flocculants. GIAB. 2013. No. 3. pp. 150–154.

Language of full-text русский
Полный текст статьи Получить
Назад