Journals →  CIS Iron and Steel Review →  2020 →  #1 →  Back

Rolling and Metal Forming
ArticleName Using the similarity theory for description of laser hardening processes
DOI 10.17580/cisisr.2020.01.09
ArticleAuthor N. A. Chichenev, S. M. Gorbatyuk, M. G. Naumova, I. G. Morozova

National Research University of Technology “MISiS” (Moscow, Russia):

N. A. Chichenev, Dr. Eng., Prof., Dept. of Engineering of Technological Equipment, E-mail:
S. M. Gorbatyuk, Dr. Eng., Prof., Head of Dept. of Engineering of Technological Equipment
M. G. Naumova, Senior Researcher, Dept. of Engineering of Technological Equipment
I. G. Morozova, Cand. Eng., Assistant Prof., Dept. of Engineering of Technological Equipment


Based on the theory of similarity for describing laser hardening processes, we suggested dimensionless parameters that simultaneously take into account both process parameters of the laser heat processing and the thermophysical characteristics of the metal being processed, and have a clear physical meaning. To build a statistical model of the laser exposure area depth from the laser radiation parameters, we used in our studies the methods of mathematical experiment design, and in order to summarize the results obtained on the basis of applying similarity theory relations, we suggested to use the following dimensionless (generalized) parameters: 1) the laser run overlap factor S*; 2) the relative power of the laser processing Р*; 3) the relative velocity of the laser beam movement V*; 4) the relative depth of the hardened layer Z*. The overlap factor S* describes the effect of subsequent adjacent laser runs on the previous ones: with S* < 1, the runs overlap, and the material structure in the previous laser area changes; usually, with S* > 2, the mutual effect of adjacent runs can be neglected; therefore, this condition is often used in the laser hardening of a metal working process (MWP) tool. The value Р* corresponds to the ratio of the effective laser radiation power Рef = Kabs·Р to the power that can be diverted from the surface due to thermal conductivity deep into the metal without melting. The value V* is equal to the ratio of the laser beam velocity to the temperature front propagation velocity in this material. As the relative value Z*, we adopted the ratio of the hardened layer depth to the maximum possible theoretical value , which is achieved when the temperature on the metal surface reaches its melting point. The use of dimensionless parameters allows us to build mathematical models for laser hardening and, based on the same, to develop and to optimize the laser heat processing method.

keywords Laser hardening, theory of dimensions, dimensionless parameters, maximum hardening depth, surface temperature, laser run overlap factor, relative power of laser processing, relative velocity of the laser beam movement

1. Wendt P. Innovations of LOI Thermprocess in the field of heating, cooling and heat treatment. Chernye metally. 2016. No. 5. pp. 54–57.
2. Stenico A., Tami W. Experience of improvement of direct quenching technology at the plant in the USA. Chernye metally. 2018. No. 12. pp. 41–43.
3. Maharjan N., Zhou W., Zhou Y., Wu N. Underwater laser hardening of bearing steels. Journal of Manufacturing Processes. 2019. Vol. 47. pp. 52–61. DOI: 10.1016/j.jmapro.2019.08.020.
4. Khorram A., Davoodi Jamaloei A., Jafari A., Moradi M. Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation. Optics and Laser Technology. 2019. Vol. 119. Article № 105617. DOI: 10.1016/j.optlastec.2019.105617.
5. Bahrami Balajaddeh M., Naffakh-Moosavy H. Pulsed Nd:YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation. Optics and Laser Technology. 2019. Vol. 119. 105651. DOI: 10.1016/j.optlastec.2019.105651.
6. Hsu T.-H., Chang Y.-J., Huang C.-Y., Yen H.-W., Chen C.-P., Jen K.-K., Yeh A.-C. Microstructure and property of a selective laser melting process induced oxide dispersion. Journal of Alloys and Compounds. 2019. Vol. 803. pp. 30–41. DOI: 10.1016/j.jallcom.2019.06.289.
7. Sim A., Park C., Kang N., Kim Y., Chun E.-J. Effect of laser-assisted nitriding with a high-power diode laser on surface hardening of aluminum-containing martensitic steel. Optics and Laser Technology. 2019. Vol. 116. pp. 305–314. DOI: 10.1016/j.optlastec.2019.03.040.
8. Moradi M., Ghorbani D., Moghadam M. K., Kazazi M., Rouzbahani F., Karazi S. Nd:YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. Journal of Alloys and Compounds. 2019. Vol. 795. pp. 213–222. DOI: 10.1016/j.jallcom.2019.05.016.
9. Moradi M., Arabi H., Karami Moghadam M., Benyounis K. Y. Enhancement of surface hardness and metallurgical properties of AISI 410 by laser hardening process; diode and Nd:YAG lasers. Optik. 2019. Vol. 188. pp. 277–286. DOI: 10.1016/j.ijleo.2019.05.057.
10. Sarkar S., Kumar C.S., Nath A.K. Effect of mean stresses on mode of failures and fatigue life of selective laser melted stainless steel. Materials Science and Engineering A. 2019. Vol. 755. pp. 235–245. DOI: 10.1016/j.msea.2019.04.003.
11. Moradi M., Arabi H., Jamshidi Nasab S., Benyounis K.Y. A comparative study of laser surface hardening of AISI 410 and 420 martensitic stainless steels by using diode laser. Optics and Laser Technology. 2019. Vol. 111. pp. 347–357. DOI: 10.1016/j.optlastec.2018.10.013.
12. Grigoryants A. G., Shiganov I. N., Misyurov A. I. Tekhnologicheskie protsessy lazernoi obrabotki. A Tutorial. Moscow : Izd-vo MGTU im. N. E. Baumana. 2006. 663 p.
13. Metallovedenie i termicheskaya obrabotka stali i chuguna. A Manual in 3 volumes. Moscow : Intermet Inzhiniring. Volume 1: Metallovedenie i termicheskaya obrabotka stali i chuguna. 2005. 647 p.; volume 2: Stroenie stali i chuguna. 2005.
528 p.; volume 3: Termicheskaya i termomekhanicheskaya obrabotka stali i chuguna. 2007. 920 .
14. Sedov L. I. Metody podobiya i razmernostei v mekhanike. Moscow : Nauka. 1965. 388 p.
15. Veremeevich A. N., Gerasimova A. A., Zarapin A. Yu. Inzhiniring tekhnologii lazernoi poverkhnosti obrabotki, rezki i svarki: A Manual. Staryi Oskol : TNT. 2018. 124 p.
16. Naumova M. G., Morozova I. G., Borisov P. V. Study of metal surface with color image obtained with laser marking. Solid State Phenomena. 2020. Vol. 299 SSP. pp. 943–948. DOI: 10.4028/
17. Naumova M. G., Morozova I. G., Borisov P. V. Investigating the features of color laser marking process of galvanic chrome plating in order to create a controlled color image formation at given marking. Materials Today: Proceedings. 2019. Vol. 19. pp. 2405–2408. DOI: 10.1016/j.matpr.2019.08.044.1
18. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Development of the working model of production reindustrialization of die steel heat treatment. Izvestiya vuzov. Chernaya metallurgiya. 2017. Vol. 60. No. 5. pp. 410–415. DOI: 10.17073/0368-0797-2017-5-410-415.
19. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Reindustrialization principles in the heat treatment of die steels. Steel in Translation. 2017. Vol. 47. No. 5. pp. 308–312. DOI: 10.3103/S0967091217050047.
20. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Color Mark Formation on a Metal Surface by a Highly Concentrated Energy Source. Metallurgist. 2016. Vol. 60. No. 5-6. pp. 646–650. DOI: 10.1007/s11015-016-0345-0.
21. Mayrhofer A., Hartl F., Rohrhofer A., Stohl R. Control of steelmaking equipment parameters. Chernye metally. 2018. No. 9. pp. 28–33.
22. Zhiltsov A. P., Vishnevsly D. A., Kozachishen V. A., Bocharov A. V. Development of the algorithm and computer program for calculating the equipment reliability and production risk in the metallurgical industry. Chernye metally. 2018. No. 11. pp. 27–33.
23. Rumyantsev M. I. Some approaches to improve the resource efficiency of production of flat rolled steel. CIS Iron and Steel Review. 2016. Vol. 12. pp. 32–36.

Full content Using the similarity theory for description of laser hardening processes