Название |
Study of the influence of the test load on indentation size effect during measuring the materials hardness by a spherical indenter |
Библиографический список |
1. Flossdorf F.-J., Wieland H.-J. Material science and steel testing technologies. Chernye Metally. 2010. No. 5. pp. 57–64. 2. Pharr G. M., Herbert E. G., Gao Y. The indentation size eff ect: a critical examination of experimental observations and mechanistic interpretations. Annual Review of Materials Research. 2010. Vol. 40, Iss. 1. pp. 271–292. 3. Swadener J. G., George E. P., Pharr G. M. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids. 2002. Vol. 50, Iss. 4. pp. 681–694. 4. Matyunin V. М., Dubov А. А., Marchenkov А. Yu. Scale factor in determining the hardness of metallic materials. Zavodskaya laboratoriya. Diagnostika materialov. 2009. Vol. 75. No. 9. pp. 59–62. 5. Voyiadjis G., Yaghoobi M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals. 2017. Vol. 7, Iss. 10. pp. 321. 6. Nix W. D., Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids. 1998. Vol. 46, Iss. 3. pp. 411–425. 7. Gerberich W. W., Tymiak N. I., Grunlan J. C., Horstemeyer M. F., Baskes M. I. Interpretations of indentation size effect. Journal of Applied Mechanics. 2002. Vol. 69, Iss. 4. pp. 433–442. 8. Udalov A. A., Parshin S. V., Udalov A. V. Indentation size effect during measuring the hardness of materials by pyramidal indenter. Materials Today: Proceedings. 2019. Vol. 19. pp. 2034–2036. 9. Spary I. J., Bushby A. J., Jennett N. M. On the indentation size effect in spherical indentation. Philosophical Magazine. 2006. Vol. 86, Iss. 33-35. pp. 5581–5593. 10. Udalov A. A., Udalov A. V., Parshin S. V. Indentation Size Effect during Measuring the Hardness of Materials by Spherical Indenter. Solid State Phenomena. 2020. Vol. 299. pp. 1172–1177. 11. Rashid K., Abu Al-Rub, Abu Faruk N. M. Prediction of Micro and Nano Indentation Size Effects from Spherical Indenters. Mechanics of Advanced Materials and Structures. 2012. Vol. 19, Iss. 1-3. pp. 119–128. 12. Bulanov E. А. The relationship between the load and deformation parameters during penetration of a spherical indenter into an elastoplastic medium at full plastic flow. Trenie i smazka v mashinakh i mekhanizmakh. 2013. No. 1. pp. 34–36. 13. Matyunin V. М., Kazantsev А. G., Marchenkov А. Yu. Distribution of stresses and strains in a deformed metal volume upon indentation of a spherical indenter. Zavodskaya laboratoriya. Diagnostika materialov. 2017. Vol. 83. No. 1. pp. 72–77. 14. Gao H., Huang Y., Nix W. D., Hutchinson J. W. Mechanism based strain gradient plasticity — I. Theory. Journal of the Mechanics and Physics of Solids. 1999. Vol. 47, Iss. 6. pp. 1239–1263. 15. Huang Y., Gao H., Nix W. D., Hutchinson J. W. Mechanism-based strain gradient plasticity — II. Analysis. Journal of the Mechanics and Physics of Solids. 2000. Vol. 48, Iss. 1. pp. 99–128. 16. Huang Y., Qu S., Hwang K. C., Li M., Gao H. A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity. 2004. Vol. 20, Iss. 4–5. pp. 753–782. 17. Pugno N. M. A general shape/size-eff ect law for nanoindentation. Acta Materialia. 2007. Vol. 55, Iss. 6. pp. 1947–1953. 18. Feng G., Nix W. D. Indentation size effect in MgO. Scripta Materialia. 2004. Vol. 51, Iss. 6. pp. 599–603. 19. Huang Y., Zhang F., Hwang K. C., Nix W. D., Pharr G. M. et al. A model for size effects in nanoindentation. Journal of the Mechanics and Physics of Solids. 2006. Vol. 54, Iss. 8. pp. 1668–1686. 20. Ruiz-Moreno A., Hähner P. Indentation size effects of ferritic/martensitic steels: a comparative experimental and modelling study. Materials & Design. 2018. Vol. 145. pp. 168–180. 21. Udalov А. V., Parshin S. V., Udalov А. А. Determination of the resistance to metals and alloys deformation by the indenter penetration method. Deformatsiya i razrushenie materialov. 2019. No. 4. pp. 40–44. 22. Udalov A. V., Udalov A. A. Method of determining deformation resistance of metal materials. Patent RF No. 2703808. Applied: 29.10.2018. Published: 22.10.2019. Bulletin No. 30. 23. Zhang P., Li S. X., Zhang Z. F. General relationship between strength and hardness. Materials Science and Engineering: A. 2011. Vol. 529. pp. 62–73. 24. Tiryakioglu M. On the relationship between Vickers hardness and yield stress in Al – Zn – Mg – Cu Alloys. Materials Science and Engineering: A. 2015. Vol. 633. pp. 17–19. 25. Udalov A. V., Udalov A. A. Study of the change in the deformation resistance of low-carbon steel in the process of rotary drawing with wall thinning. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2019. Vol. 21. No. 3. pp. 59–71. 26. Pavlina E. J., Van Tyne C. J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. Journal of Materials Engineering and Performance. 2008. Vol. 17, Iss. 7. pp. 888–893. 27. Herbert E. G., Oliver W. C., Pharr G. M. On the measurement of yield strength by spherical indentation. Philosophical Magazine. 2006. Vol. 86, Iss. 33-35. pp. 5521–5539. 28. Matyunin V. М., Marchenkov А. Yu., Volkov P. V. Determination of the conditional yield point of the metal on the kinetic diagram of a spherical indenter indentation. Zavodskaya laboratoriya. Diagnostika materialov. 2017. Vol. 83. No. 6. pp. 57–61. 29. Rudnitsky V. A., Kren A. P., Lantsman G. A. Determining Yield Strength of Metals by Microindentation with a Spherical Tip. Russian Journal of Nondestructive Testing. 2019. Vol. 55. pp. 162–168. 30. ISO 6506–1:2014. Metallic mateirals. Brinnell hardness test. Part 1: Test method. Published: 25.09.2014. 31. GOST 23677–79. Hardness testing machines for metals. General technical requirements. Introduced: 01.01.1981. |