Название |
Comparison of coking additives obtained from different types of oil stock |
Информация об авторе |
KINEF LLC, Kirishi, Leningrad Region, Russia1 ; Saint Petersburg Mining University, Staint Petersburg, Russia2:
A. V. Kameshkov, Technical Director1, Associate Professor at the Department of Chemical Technology and Oil and Gas Processing2, Candidate of Technical Sciences, e-mail: tehdirector@kinef.ru
Saint Petersburg Mining University, Staint Petersburg, Russia N. K. Kondrasheva, Head of the Department of Chemical Technology and Oil and Gas Processing, Doctor of Technical Sciences, Professor, e-mail: natalia_kondrasheva@mail.ru R. R. Gabdulkhakov, Postgraduate Student at the Department of Chemical Technology and Oil and Gas Processing, e-mail: renat18061995@gmail.com V. A. Rudko, Head of the Laboratory of Innovative Refining Technology, Candidate of Technical Sciences, e-mail: rva1993@mail.ru |
Библиографический список |
1. Bogdanchik N. L. A hydrocracking complex. A new stage in the life of the refinery. Neftepererabotka i neftekhimiya. 2016. No. 3. pp. 9–17. 2. Kharlamov A. N. KINEF LLC: A long-awaited start-up. Mir nefteproduktov. Vestnik neftyanykh kompaniy. 2014. No. 1. pp. 38–39. 3. Wisecarver K. Delayed Coking. Springer Handbook of Petroleum Technology. Ed. C. S. Hsu, P. R. Robinson. Amsterdam : Springer International Publishing AG, 2017. pp. 903–913. 4. Kapustin V. M., Glagoleva V. F. Physicochemical aspects of petroleum coke formation (review). Petroleum Chemistry. 2016. Vol. 56, No. 1. pp. 1–9. 5. Zhu Y., Zhao C., Xu Y., Hu C., Zhao X. Preparation and Characterization of Coal Pitch-Based Needle Coke (Part I): The Effects of Aromatic Index (f a) in Refined Coal Pitch. Energy & Fuels. 2019. Vol. 33, No. 4. pp. 3456–3464. 6. Zhu Y., Hu C., Xu Y., Zhao C., Yin X., Zhao X. Preparation and Characterization of Coal Pitch-Based Needle Coke (Part II): The Effects of β Resin in Refined Coal Pitch. Energy & Fuels. 2020. Vol. 34, No. 2. pp. 2126–2134. 7. Gül Ö., Mitchell G., Etter R., Miller J. et al. Characterization of Cokes from Delayed Co-Coking of Decant Oil, Coal, Resid, and Cracking Catalyst. Energy & Fuels. 2015. Vol. 29, No. 1. pp. 21–34. 8. Zaporin V. P., Valyavin G. G., Rizvanov I. V., Akhmetov A. F. Decant-oil coking gasoils for production of industrial carbon. Chemistry and Technology of Fuels and Oils. 2007. Vol. 43, No. 4. pp. 326–329. 9. Kameshkov A. V., Kondrasheva N. K., Gabdulkhakov R. R., Rudko V. A. How the type of the raw material and the coking temperature influence the production of the coking additive. Bulletin of the Saint Petersburg State Institute of Technology (Technical University). 2020. No. 52. pp. 11–17. 10. Lavrova A. S., Vasilyev V. V., Strakhov V. M. Comparison of the Coking Products from Heavy Petroleum Tars and Heavy Catalytic-Cracking Gas-Oil. Coke and Chemistry. 2019. Vol. 62, No. 4. pp. 164–168. 11. TU 0258-229-00190437–2008. Coking additive. 12. GOST 22898–78. Low-sulphur petroleum cokes. Specifications. Introduced: 01.01.1979. 13. Vafin A. I., Zaporin V. P. Selecting a refining process for sulfurous oil that would allow to obtain a coking additive. Vestnik molodogo uchenogo UGNTU. 2015. No. 2. pp. 51–57. 14. Valyavin G. G., Zaporin V. P., Gabbasov R. G., Kalimullin T. I. Delayed coking and the production of petroleum cokes for specific applications. Territoriya Neftegaz. 2011. No. 8. pp. 44–49. 15. Bazhin V. Y., Kuskov V. B., Kuskova Y. V. Problems of using unclaimed coal and other carbon-containing materials as energy briquettes. Ugol. 2019. No. 04. pp. 50–54. 16. Bazhin V. Y., Kuskov V. B., Kuskova Y. V. Processing of Low-Demand Coal and Other Carbon-Containing Materials for Energy Production Purposes. Inzynieria Mineralna. 2019. No. 21. pp. 195–198. 17. Ochirbat P. Coal Industry in Mongolia: Status and Prospects of Development. Journal of Mining Institute. 2017. Vol. 226. pp. 420–427. 18. Morozov A. N., Khayrudinov I. R., Zhirnov B. S., Fatkullin M. R. Research methods to study sintering additive production process. Mir nefteproduktov. Vestnik neftyanykh kompaniy. 2007. No. 1. pp. 14–15. 19. Malaquias B., Flores I.V., Bagatini M. Effect of high petroleum coke additions on metallurgical coke quality and optical texture. REM – International Engineering Journal. 2020. Vol. 73, No. 2. pp. 189–195. 20. GOST 25543–2013. Brown coals, hard coals and anthracites. Classification according to genetic and technological parameters. Introduced: 01.01.2015. 21. GOST 32464–2013. Brown coals, hard coals and anthracites. General technical requirements. Introduced: 01.01.2015. 22. Ibrahim H. A.-H. Analysis and Characterization of High-Volatile Petroleum Coke. Recent Advances in Petrochemical Science. 2018. Vol. 6, No. 1. pp. 1–3. 23. Kondrasheva N. K., Rudko V. A., Nazarenko M. Y., Gabdulkhakov R. R. Influence of parameters of delayed asphalt coking process on yield and quality of liquid and solid-phase products. Journal of Mining Institute. 2020. Vol. 241, No. 1. pp. 97–104. 24. GOST 27589–91. Coke. Method for determination of moisture content in analytical sample. Introduced: 01.07.1992. 25. GOST 33503–2015. Solid mineral fuel. Methods for determination of moisture in the analysis sample. Introduced: 01.04.2017. 26. GOST 22692–77. Carbon materials. Method for determination of ash. Introduced: 01.07.1978. 27. GOST R 55660–2013. Solid mineral fuel. Determination of volatile matter. Introduced: 01.01.2015. 28. GOST 10220–82. Coke. Methods for the determination of true relative density, apparent relative density and porosity. Introduced: 01.01.1984. 29. GOST 26132–84. Petroleum and pitch cokes. Microstructure evaluation method. Introduced: 01.07.1985.
30. GOST 9450–76. Measurements microhardness by diamond instruments indentation. Introduced: 01.01.1979. 31. GOST R 8.748–2011. Metals and alloys. Use of indentation tools to measure hardness and other material properties. Introduced: 01.05.2013. 32. ISO 14577–1:2015. Metallic materials. Instrumented intendation test for hardness and materials parameters. Part 1: Test method. Published: 07.2015. 33. Kondrasheva N. K., Rudko V. A., Nazarenko M. Y., Povarov V. G. et al. Influence of Parameters of Delayed Coking Process and Subsequent Calculation on the Properties and Morphology of Petroleum Needle Coke from Decant Oil Mixture of West Siberian Oil. Energy & Fuels. 2019. Vol. 33, No. 7. pp. 6373–6379. 34. Bragg W. L. The Structure of Some Crystals as Indicated by Their Diffraction of X-rays. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1913. Vol. 89, No. 610. pp. 248–277. 35. Wulff G. Über die Kristallröntgenogramme. Physikalische Zeitschrift. 1913. Vol. 14. pp. 217–220. 36. Scherrer P. Bestimmung der inneren Struktur und der Gröβe von Kolloidteilchen mittels Röntgenstrahlen. Berlin, Heidelberg: Springer, 1912. pp. 387–409. 37. Warren B. E. X-ray diffraction in random layer lattices. Physical Review. 1941. Vol. 59, No. 9. pp. 693–698. 38. Feret F. R. Determination of the crystallinity of calcined and graphitic cokes by X-ray diffraction. The Analyst. 1998. Vol. 123, No. 4. pp. 595–600. 39. Kuznetsov P. N., Kuznetsova L. I., Kolesnikova S. M., Obukhov Y. V. Comparison of supramolecular organization of brown coal from different deposits. Chemistry for Sustainable Development. 2001. Vol. 9. pp. 255–261. 40. Belenkov E. A., Karnaukhov E. A. Influence of crystal dimensions on interatomic distances in dispersed carbon. Physics of the Solid State. 1999. Vol. 41, No. 4. pp. 672–675. 41. Tamarkina Yu. V., Kucherenko V. A., Shendrik T. G. Supramolecular compounds as precursors of activated carbons: A review. Zhurnal Sibirskogo federalnogo universiteta. Khimiya. 2015. Vol. 8, No. 1. pp. 99–128. 42. Popova A. N. Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry. 2017. Vol. 60, No. 9. pp. 361–365. 43. Ismagilov Z. R., Sozinov S. A., Popova A. N., Zaporin V. P. Structural Analysis of Needle Coke. Coke and Chemistry. 2019. Vol. 62, No. 4. pp. 135–142. |