Journals →  Non-ferrous Metals →  2020 →  #2 →  Back

ArticleName Microstructure formation and mechanical properties of isothermally-solidified titanium alloy joints brazed by a Ti – Zr – Cu – Ni – Be amorphous alloy foil
DOI 10.17580/nfm.2020.02.08
ArticleAuthor Morokhov P. V., Ivannikov A. A., Popov N. S., Sevryukov O. N.

National Research Nuclear University “MEPhI”, Moscow, Russia:

P. V. Morokhov, Engineer Department No. 9 “Physical Problems of Materials Science”, e-mail:
A. A. Ivannikov, Senior Lecturer, Department No. 9 “Physical Problems of Materials Science”, e-mail:
N. S. Popov, Masters Student, Department No. 9 “Physical Problems of Materials Science”, e-mail:
O. N. Sevryukov, Associate Professor Department No. 9 “Physical Problems of Materials Science”, e-mail:


The article was attended by the staff of the Department No. 9 “Physical Problems of Materials Science” NRNU MEPhI — Sidorenko A. A.


Two titanium alloys, OT4 and VT6-c, with a pseudo-α and α + β structure, respectively, were brazed using transient liquid phase (TLP) bonding. To obtain high strength joints an amorphous foil (Ti – 12Zr – 22Cu – 12Ni – 1.5 Be – 0.8V wt.%) was used. Based on microstructural studies and analysis of two- and three-component phase diagrams, the mechanism of the microstructural evolution of the brazed seams of titanium alloys OT4 and VT6-c is described. Brazing at 800 °C with exposure for 0.5 h leads to the formation of a heterogeneous structure consisting of Widmanstätten, eutectoid, and eutectic. Brazed OT4 and VT6-c joints with the presence of a eutectic layer in the centre show low mechanical properties; their ultimate strength lies in a range from 200 to 550 MPa. Increasing the brazing temperature to 840 °C and the exposure time to 2 h, leads to the disappearance of the brittle eutectic component from the seam. This structure typically consists of Widmanstätten with a small number of eutectoid fractions. Joints with the absence of a eutectic layer in the brazed seam demonstrate a strength equal to the base titanium alloys. In this case, failure occurs in the base metal. For brazed samples from the OT4 alloy, the tensile strength value is σb = 750 ± 3 MPa, and for samples from VT6-c, σb = 905 ± 3 MPa.

This work was supported by Competitiveness Growth Programme of the Federal Autonomous Educational Institution of Higher Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).

The authors express a gratitude to the staff of "MEPhIANETO" for providing brazign foils".

keywords Titanium, TLP bonding, diffusion brazing, microstructure, tensile strength, amorphous alloy, microhardness

1. Bertossa R. C., Hikido T. Brazing And Diffusion Bon ding of Titanium Alloys to Similar and Dissimilar Materials. SAE Technical Paper Series. 1965. DOI: 10.4271/650752
2. Liu C. C., Ou C. L., Shiue R. K. The Microstructural Observation and Wettability Study of Brazing Ti–6Al–4V and 304 Stainless Steel Using Three Braze Alloys. Journal of Materials Science. 2002. Vol. 37, Iss. 11. pp. 2225–2235.
3. Shapiro A., Flom Y. Brazing of Titanium at Temperatures below 800°C: Review and Prospective Applications. DVSBerichte. 2007. Vol. 243.
4. Shapiro A., Rabinkin A. State-of-the-Art of Titaniumbased Brazing Filler Metals. Welding Journal. 2003. Vol. 82, Iss. 10. pp. 36–43.
5. Khorunov V. F., Maksymova S. V., Voronov V. V. New Filler Metal Systems for the Brazing of Titanium Alloys. China Welding (English Edition). 2015. Vol. 24, Iss. 3. pp. 1–5.
6. Ganjeh E., Sarkhosh H. Microstructural, Mechanical and Fractographical Study of Titanium-CP and Ti – 6Al – 4V Similar Brazing with Ti-based Filler. Materials Science and Engineering: A. 2013. Vol. 559. pp. 119–129.
7. Ganjeh E., Sarkhosh H., Bajgholi M.E., Khorsand H., Ghaffari M. Increasing Ti–6Al–4V Brazed Joint Strength Equal to the Base Metal by Ti and Zr Amorphous Filler Alloys. Materials Characterization. 2012. Vol. 71. pp. 31–40.

8. Song X. G., Tian X., Zhao H. Y., Si X. Q., Han G. H., Feng J. C. Interfacial Microstructure and Joining Properties of Titanium-Zirconium-Molybdenum Alloy Joints Brazed Using Ti-28Ni Eutectic Brazing Alloy. Materials Science and Engineering: A. 2016. Vol. 653. pp. 115–121.
9. Afshar F. N., Ambat R., Kwakernaak C., de Wit J. H. W., Mol J. M. C., Terryn H. Electrochemical Depth Profiling of Multilayer Metallic Structures: An Aluminum Brazing Sheet. Electrochimica Acta. 2012. Vol. 77. pp. 285–293.
10. Lee M. K., Lee J. G. Mechanical and Corrosion Properties of Ti-6Al-4V Alloy Joints Brazed with a Low-Melting-Point 62.7Zr – 11.0Ti – 13.2Cu – 9.8Ni – 3.3Be Amorphous Filler Metal. Materials Characterization. 2013. Vol. 81. pp. 19–27.
11. Jing Y., Xiong H., Shang Y., Wang J., Cheng Y., Jiang J. Design TiZrCuNi Filler Materials for Vacuum Brazing TA15 Alloy. Journal of Manufacturing Processes. 2020. Vol. 53. pp. 328–335.
12. Rabinkin A., Wenski E., Ribaudo A. Brazing Stainless Steel Using a New MBF Series of Ni – Cr – Si – B Amorphous Brazing Foil. New Brazing Alloys Withstand High-Temperature and Corrosive Enviroments. Weldind Research Supplement. February 1998. pp. 66-s–75-s.
13. Jing Y., Su D., Yue X., Britton T. B., Jiang J. The Development of High Strength Brazing Technique for Ti – 6Al – 4V Using TiZrCuNi Amorphous Filler. Materials Characterization. 2017. Vol. 131. pp. 526–531.
14. Pang S., Sun L., Xiong H., Chen C., Liu Y., Li H., Zhang T. A Multicomponent TiZr-based Amorphous Brazing Filler Metal for High-Strength Joining of Titanium Alloy. Scripta Materialia. 2016. Vol. 117. pp. 55–59.
15. Galindo-Nava E. I., Jing Y. J., Jiang J. Predicting the Hardness and Solute Distribution During Brazing of Ti – 6Al – 4V with TiZrCuNi Filler Metals. Materials Science and Engineering: A. 2018. Vol. 712. pp. 122–126.
16. Cook G. O., Sorensen C. D. Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding. Journal of Materials Science. 2011. Vol. 46, Iss. 16. pp. 5305–5323.
17. Way M., Willingham J., Goodall R. Brazing Filler Metals. International Materials Reviews. 2019. Vol. 65, Iss. 5. pp. 1–29.
18. Yang Z., Chen Y., Niu S., Wang Y., Han Y., Cai X., Wang D. Phase Transition, Microstructural Evolution and Mechanical Properties of Ti – 6Al – 4V and Ti – 6.5Al – 3.5Mo – 1.5Zr –0.3Si Joints Brazed with Ti – Zr – Ni – Cu Filler Metal. Archives of Civil and Mechanical Engineering. 2020. Vol. 20, Iss. 3. pp. 1–15.
19. Banerjee S., Mukhopadhyay P. Phase Transformations. Examples from Titanium and Zirconium Alloys. Mumbai: Bhabha Atomic Research Centre, 2007. 813 p.
20. Solntsev U. P. Metals and Alloys Handbook. St. Petersburg: NPO “Professional”, 2003. 1000 p.
21. Fedotov V. T., Suchkov A. N., Kalin B. A., Sevryukov O. N., Ivannikov A. A. Rapidly Quenched Filler Metal STEMET for Brazing of Materials of Modern Technology. Tsvetnye Metally. 2014. No. 12. pp. 32–37.
22. Zhang J., Zhang T., Cheng Y. Laminated Forming of TC4 Titanium Alloy by High Frequency Induction Brazing. Xiyou Jinshu Cailiao Yu Gongcheng (Rare Metal Materials and Engineering). 2017. Vol. 46, No. 11. pp. 3440–3445.
23. Rabinkin A. New Applications for Rapidly Solidified Brazing Foils. Welding Journal. 1989. Vol. 10. pp. 39–46.
24. Kalin B. A., Sevryukov O. N., Fedotov V. T., Plyushchev A. N., Yaykin A. P. New Amorphous Solders for Brazing of Titanium and its Alloys. Svarochnoe Proizvodstvo. 2001. No. 3. pp. 37–39.
25. Kim K.H., Lim C. H., Lee J. G., Lee M. K., Rhee C. K. Growth and Microstructure Formation of Isothermally-Solidified Zircaloy-4 Joints Brazed by a Zr – Ti – Cu – Ni Amorphous Alloy Ribbon. Journal of Nuclear Materials. 2013. Vol. 441, Iss. 1-3. pp. 59–66.
26. Donthula H., Vishwanadh B., Alam T., Borkar T., Contieri R. J., Caram R., Banerjee R., Tewari R., Dey G. K., Banerjee S. Morphological Evolution of Transformation Products and Eutectoid Transformation(s) in a Hyper-Eutectoid Ti-12 at% Cu Alloy. Acta Materialia. 2019. Vol. 168. pp. 63–75.
27. Contieri R. J., Lopes E. S. N., Caram R., Devaraj A., Nag S., Banerjee R. Effects of Cooling Rate on the Microstructure and Solute Partitioning in Near Eutectoid Ti – Cu Alloys. Philosophical Magazine. 2014. Vol. 94, Iss. 21. pp. 2350– 2371.
28. Alshammari Y., Alqattan F., Yang F., Bolzoni L. Vacuum Sintering and Solution Plus Aging Heat Treatment of Eutectoid Bearing Binary Ti Alloy. International Journal of Refractory Metals and Hard Materials. 2020. Vol. 91. 105267. DOI: 10.1016/j.ijrmhm.2020.105267
29. Sun Z., Guo S., Yang H. Nucleation and Growth Mechanism of α-Lamellae of Ti Alloy TA15 Cooling from an α + β Phase Field. Acta Materialia. 2013. Vol. 61, Iss. 6. pp. 2057–2064.
30. Lee M. K., Kim K. H., Lee J. G., Rhee C. K. Growth of Isothermally-Solidified Titanium Joints Using a Multi-Component Zr – Ti – Cu – Ni – Be Amorphous Alloy as a Brazing Filler. Materials Characterization. 2013. Vol. 80. pp. 98–104.
31. Kikuchi M., Takahashi M., Okuno O. Machinability of Experimental Ti – Cu Alloys. Materials Transactions. 2008. Vol. 49, Iss. 4. pp. 800–804.
32. Evstyukhin A. I., Korobkov I. I., Osipov V. V. Intermetallic Compounds of Zirconium and Their Influence on the Corrosion Properties of Zirconium Alloys. Soviet Atomic Energy. 1970. Vol. 28, Iss. 3. pp. 262–267.
33. Liu S., Miao J., Zhang W., Wei R., Chen C., Wang T., Zhao W., Jiang Z., Li F. Interfacial Microstructure and Shear Strength of TC4 Alloy Joints Vacuum Brazed with Ti – Zr – Ni – Cu Filler Metal. Materials Science and Engineering: A. 2020. Vol. 775. 138990. DOI: 10.1016/j.msea.2020.138990
34. Lüjering G. Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys. Materials Science and Engineering: A. 1998. Vol. 243, Iss. 1–2. pp. 32–45.
35. Jing Y., Xiong H., Shang Y., Cheng Y. Simulation on Tibased Filler and Vacuum Brazing for TA15 Alloy. Welding in the World. 2020. Vol. 64, Iss. 7. pp. 1261–1268.

Full content Microstructure formation and mechanical properties of isothermally-solidified titanium alloy joints brazed by a Ti – Zr – Cu – Ni – Be amorphous alloy foil