Журналы →  Цветные металлы →  2021 →  №1 →  Назад

Обогащение
Название Получение комплексных коагулянтов на основе крупнотоннажных отходов и продуктов промышленных производств
DOI 10.17580/tsm.2021.01.01
Автор Кузин Е. Н., Кручинина Н. Е.
Информация об авторе

Российский химико-технологический университет им. Д. И. Менделеева, Москва, Россия:

Е. Н. Кузин, доцент кафедры промышленной экологии, канд. техн. наук, эл. почта: e.n.kuzin@muctr.ru
Н. Е. Кручинина, декан факультета биотехнологии и промышленной экологии, зав. кафедрой промышленной экологии, докт. техн. наук, проф., эл. почта: krutch@muctr.ru

Реферат

В результате экспериментов были получены образцы комплексных коагулянтов из побочных продуктов процесса апатит-нефелиновой флотации (нефелиновый концентрат) и отхода производства огнеупоров — синтетического технического брусита. Установлена возможность использования водных растворов тетрахлорида титана в качестве кислотного выщелачивающего реагента. Изучен процесс извлечения основных активных компонентов водными растворами тетрахлорида титана. Определен приоритетный механизм процесса выщелачивания металлических компонентов сильно разбавленными водными растворами тетрахлорида титана. Исследован количественный и качественный состав полученных растворов комплексных коагулянтов. Установлено, что модифицированные магниевые коагулянты обладают высокой эффективностью при высоких значениях рН очищаемой воды. Комплексные алюминийсодержащие реагенты при нейтральных рН были значительно эффективнее традиционных коагулянтов (сульфат и (окси)хлорид алюминия). Оценка коагулирующей способности полученных реагентов, проведенная на поверхностном стоке и сточной воде установки очистки отходящих газов участка литья предприятия цветной металлургии, показала, что при эквивалентной дозе эффективность модифицированного алюминиевого коагулянта превышает эффективность традиционных реагентов на 30–35 %. Эксперименты, направленные на оценку эффективности очистки воды с высокими значениями рН (цементное производство), показали, что введение в состав магниевого коагулянта модифицирующей добавки позволяет повысить эффективность очистки более чем на 20 %. Доказано, что введение в состав коагулянтов продуктов гидролиза соединений титана позволяет значительно увеличить эффективность очистки вне зависимости от основного компонента реагента (соли алюминия или магния).

Работа выполнена в рамках программы поддержки молодых ученых-преподавателей РХТУ им. Д. И. Менделеева (Заявка З-2020-013.)

Ключевые слова Модифицированный коагулянт, продукты гидролиза соединений титана, очистка сточных вод, нефелин, технический брусит
Библиографический список

1. Babenkov E. D. Water treatment with coagulants. Moscow : Nauka, 1977. 356 p.
2. Kuzin E. N., Kruchinina N. E. Obtaining of hardened forms of aluminiumsilicate coagulants and their use in water-purification and water treatment. Tsvetnye Metally. 2016. No. 10. pp. 8–13. DOI : 10.17580/tsm.2016.10.01.
3. Velyaev Yu. O., Mayorov D. V., Zakharov K. V. Optimized production of alumosilicic coagulant/flocculant on the basis of sulphuric acid recovery of nepheline: Process examination and development. Khimicheskaya tekhnologiya. 2011. No. 10. pp. 614–620.
4. Smirnov A. D., Kruchinina N. E., Burbaeva I. V., Timasheva N. A. Aluminium-bearing coagulants used for surface water treatment. Ekologiya i promyshlennost Rossii. 2005. No. 8. pp. 4–7.

5. Gablenko M. V., Timasheva N. A., Shalbak Ammar, Shon Le Tuan. Uspekhi v khimii i khimicheskoy tekhnologii. 2008. Vol. 22, No. 13. pp. 44–46.
6. Shabanova N. A., Popov V. V., Sarkisov P. D. The chemistry and technology of nanodispersed oxides : Learner’s guide. Moscow : Akademkniga, 2007. 309 p.
7. Izmaylova N. L. Understanding the coagulation ability of composite coagulants containing titanium and aluminium salts with regard to the paper pulp components. Proceedings of the 17th MESK Conference – 2012 “Ecology of Russia and Neighbouring Territories”. Vol. 1. Novosibirsk State University, Novosibirsk, 2012. pp. 109–110.
8. Izmailova N. L., Lorentson A. V., Chernoberezhskii Y. N. Composite coagulant based on titanyl sulfate and aluminum sulfate. Russian Journal of Applied Chemistry. 2015. Vol. 88, No. 3. pp. 458–462.
9. Zhao Y. X., Gao B. Y., Zhang G. Z., Qi Q. B. et al. Coagulation and sludge recovery using titanium tetrachloride as coagulant for real water treatment: A comparison against traditional aluminum and iron salts. Separation and Purification Technology. 2014. Vol. 130. pp. 19–27.
10. Okour Y., Shon H. K., El Saliby I. Characterization of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment. Water Science and Technology. 2009. Vol. 59, No. 12. pp. 2463–2473.
11. Zhao Y., Gao B., Shon H., Cao B., Kim J. H. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts. Journal of Hazardous Materials. 2011. Vol. 185. pp. 1536–1542.
12. Zhao Y., Gao B., Cao B. et al. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment. Chemical Engineering Journal. 2011. Vol. 166. pp. 544–550.
13. Xu J., Zhao Y., Gao B., Zhao Q. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al-and Fe-based coagulants environmental. Science and Pollution Research. 2018. Vol. 25, No. 13. pp. 13147–13158.
14. Mamchenko A. V., Gerasimenko N. G., Deshko I. I. et al. The investigation of the efficiency of coagulants based on titanium when purifying water. Journal of Water Chemistry and Technology. 2010. Vol. 32, Iss. 3. pp. 167–175.
15. Algermissen D., Cancarevic M., Rekersdrees T. et al. Waste-free strategy at GMH based on four “R” principles. Chernye Metally. 2018. No. 6. pp. 46–52.
16. Sulimova M. A., Sizyakov V. M., Litvinova T. E., Vasilyev V. V. On possibility of the use of metallurgical production wastes as a sorbent in the industrial water cycle. Chernye Metally. 2016. No. 8. pp. 43–49.
17. Oskembekov I. M., Katkeeva G. L. Silica production from heat-andpower facilities waste materials. Obogashchenie Rud. 2014. No. 5. pp. 51–54.
18. Bortnikov А. V., Kutolin V. A., Samukov А. D., Spiridonov P. А. et al. A study of possibilities for granitic rocks processing dispersed waste material utilization in mineral cotton production. Obogashchenie Rud. 2014. No. 6. pp. 33–37.
19. Yeromasov R. G., Nikiforova E. M., Vlasov О. А., Simonova N. S. et al. The Sorsky Mining Complex sulfide molybdenum ores flotation tailings utilization in building ceramics production technology. Obogashchenie Rud. 2014. No. 3. pp. 48–52.
20. Layner A. I., Eremin N. I., Layner Yu. A., Pevzner I. Z. Alumina production. 2nd revised edition. Moscow : Metallurgiya, 1978. 344 p.
21. Matveev V. A., Zakharov V. I., Mayorov D. V., Filyuk A. S. Aluminium potassium sulphates and silicon dioxides produced from silica-containing solutions resulting from sulphuric acid decomposition of nepheline ore. Khimicheskaya tekhnologiya. 2012. No. 2. pp. 68–71.
22. Gayazova E. Sh., Shaykhiev I. G., Fridland S. V. et al. Looking at the use of magnesium sulphate for wastewater treatment in pulp industry. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. No. 9. pp. 159–161.
23. Bolshakov K. A. The chemistry and technology of rare and trace elements. Vol. 2. 2nd edition. Moscow : Vysshaya shkola, 1976. 360 p.
24. Lidin R. A., Molochko V. A., Andreeva L. L. Chemical properties of inorganic substances. Moscow : Khimiya, 2000. 282 p.
25. Gandurina L. V., Gavrilova N. N., Kuzin E. N., Raff P. A. Application of the dynamic light scattering technique for characterization of humic acids contained in natural waters. Vodosnabzhenie i sanitarnaya tekhnika. 2017. Vol. 7. pp. 25–28.
26. Kuchumov V. A., Shumkin S. S. Analyzing the chemical composition of the parent alloy when making permanent magnets from Sm – Co alloys. St. Petersburg State Polytechnical University Journal. 2017. Vol. 23, No. 1. pp. 219–225.
27. Kulskiy L. A., Nakorchevskaya V. F., Slipchenko V. A. Active silicic acid and the problem of water quality. Kiev : Naukova dumka, 1969. 235 p.
28. Zhao, Y., S. Phuntsho, Gao B. et al. Preparat ion and characterization of novel polytitanium tetrachloride coagulant for water purification. Environmental Science & Technology. 2013. Vol. 47. pp. 12966–12975.
29. Chekli L., Eripret C., Park S. H., Tabatabai S. A. et al. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water. Separation and Purification Technology. 2017. Vol. 175. pp. 99–106.
30. Wang T.-H., Navarrete-López A. M., Li S., Dixon D. A. et al. Hydrolysis of TiCl4: Initial steps in the production of TiO2. Journal of Physical Chemistry A. 2010. Vol. 114, Iss. 28. pp. 7561–7570.
31. Galloux J., Chekli L., Phuntsho S., Tijing L. D. et al. Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Separation and Purification Technology. 2015. Vol. 152. pp. 94–100. DOI: 10.1016/j.seppur.2015.08.009.
32. Draginskiy V. L., Alekseeva L. P., Getmantsev S. V. Natural water purification technology and coagulation. Moscow : Nauch. izd., 2005. 576 p.
33. Wang X., Gan Y., Guo S,. Ma X. et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis. Water Research. 2018. Vol. 132. pp. 350–360. DOI: 10.1016/j.watres.2017.12.081.
34. Xiaomeng Wang, Minghui Li, Xiaojie Song, Zhihao Che et al. Preparation and evaluation of titanium-based xerogel as a promising coagulant for water/wastewater treatment. Environmental Science & Technology. 2016. Vol. 50, Iss. 17. pp. 9619–9626. DOI: 10.1021/acs.est.6b03321
35. Kolesnikov A. V., Saveliev D. S., Kolesnikov V. A., Davydkova T. V. Recovery of highly dispersed titanium dioxide TiO2 from aqueous solutions of electrolytes by electroflotation. Steklo i keramika. 2018. No. 6. pp. 32–36.
36. Meshalkin V. P., Kolesnikov A. V., Saveliev D. S. et al. Analyzing the physico-chemical efficiency of electroflotation when recovering titanium tetrachloride hydrolysis products from industrial wastewater. Doklady Akademii nauk. 2019. Vol. 486, No. 6. pp. 680–684. DOI: 10.31857/S0869-56524866680-684.

Language of full-text русский
Полный текст статьи Получить
Назад