Journals →  Tsvetnye Metally →  2021 →  #6 →  Back

ArticleName Sorption of cationic complexes of palladium (II) from thiourea solutions
DOI 10.17580/tsm.2021.06.04
ArticleAuthor Volchkova E. V., Filinova A. S.

MIREA - Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, Moscow, Russia:
E. V. Volchkova, Associate Professor at the K. A. Bolshakov Department of Chemistry and Technology of Rare Elements, Candidate of Chemical Sciences, e-mail:
A. S. Filinova, Student at the K. A. Bolshakov Department of Chemistry and Technology of Rare Elements


This paper looks at the sorption of cationic complexes [Pd(Thio)4]2+ (where Thio stands for thiourea) on sulfo cation exchanger KU-2-8. It takes 2 days for the Pd(II) static sorption capacity to start seeing constant values; the maximum Pd(II) static sorption capacity is 2.8 mmol/g. Solutions of acids, salts, thiourea and ammonia were used as eluents for Pd(II). By the Pd(II) static desorption efficiency, the solutions can be arranged as follows: 10% Thio solution in 10% HCl (69–70%) > 6 M HCl (51–52%) > saturated KCl solution (35–36%) > 25% NH4Cl solution (6–7%)  1М H2SO4 (1–3%) 10% ammonia solution (0–1%). In the IR spectrum of the cation exchanger saturated with Pd(II) complexes, the adsorption bands of thiourea ligand appear alongside with the adsorption bands typical of the sorbent in a hydrogen form; the long-wave region contains an adsorption band at 377 cm–1, which the authors attribute to Pd – S stretching mode. A 23 cm–1 shift of the maximum of the adsorption band referring to the (ОН) stretching mode in the IR spectrum of the sorbent saturated with Pd(II) complexes into the long-wave region compared with the position of the (ОН) maximum in the spectrum of the hydrogen form sorbent is indicative of hydrogen bonding between the sulfo group of the sorbent and the amino group of the thiourea: S = O···H – N. A relationship between the sorption capacity and the acidity of the initial solution, a comparison of IR spectra of the solid phases and analysis of free thiourea contained in the mother solutions confirm that the sorption process is based on cation exchange and that all 4 Thio molecules remain in the sorption complex. Tests were conducted in which the sorbent was used for dynamic separation of Pd(II) from a standard test thiourea solution containing copper and palladium cations. It is shown that copper cations get sorbed alongside with thiourea complexes of Pd(II). Such copper cations can be partially removed from the sorbent phase by washing it with 1 M sulphuric acid solution. It was found that the thermal decomposition of the sorbent saturated with complex Pd(II) ions results in the formation of black ball-shaped granules containing 76.0–82.5% of carbon; 4.0–4.5% of sulphur; 0.3–0.4% of hydrogen; 14.0–14.5% palladium; and a trace amount of nitrogen. According to the X-ray diffraction data on the product resultant from heat treatment of the sorbent saturated with thiourea complexes of Pd(II), palladium is present in the form of metal (Fm3m) (approximately 85% of the total concentration) and its oxide PdO (P4n2). These granules can be of interest as heterogeneous carbon-containing palladium catalysts.

keywords words: sorption, cation exchanger, palladium, copper, thiourea complexes, KU-2-8, IR-spectroscopy, thermolysis, X-ray diffraction analysis

1. Ehrlich H. V., Buslaeva T. M., Maryutina T. A. Trends in sorption recovery of platinum metals: a critical survey. Russian Journal of Inorganic Chemistry. 2017. Vol. 62, No. 14. pp. 1797–1818. DOI: 10.1134/S0036023617140030.
2. Mladenova E., Karadjova I., Tsalev D. L. Solid-phase extraction in the determination of gold, palladium, and platinum. Journal of Separation Science. 2012. Vol. 35, No. 10-11. pp. 1249–1265. DOI: 10.1002/jssc.201100885.
3. Aleksandar N. Nikoloski, Kwang-Ang, Dan Li. Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins. Hydrometallurgy. 2015. Vol. 152. pp. 20–32. DOI: 10.1016/j.hydromet.2014.12.006.
4. Han Ah Choi, Ha Neul Park, Sung Wook Won. A reusable adsorbent polyethylenimine/polyvinyl chloride crosslinked fiber for Pd(II) recovery from acidic solutions. Journal of Environmental Management. 2017. Vol. 204, Part 1. pp. 200–206. DOI: 10.1016/j.jenvman.2017.08.047.
5. Kononova O. N., Duba E. V., Schneider N. I., Pozdnyakov I. A. Sorption recovery of palladium (II) and platinum (IV) from hydrochloric acid solutions. Journal of Siberian Federal University. Chemistry. 2018. Vol. 1, No. 11. pp. 6–17.
6. Md. Rabiul Awual, Md. Munjur Hasan, Hussein Znad. Organic-inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery. Chemical Engineering Journal. 2015. Vol. 259. pp. 611–619.
7. Volchkova E. V., Boryagina I. V., Buslaeva T. M., Ablitsov A. A., Bondar N. M. et al. Sorption of palladium(II) from nitric acid solutions with amine-modified silica. Izvestiya vuzov. Tsvetnaya metallurgiya. 2016. No. 3. pp. 12–19. DOI: 10.17073/0021-3438-2016-3-12-19.
8. Jian Cao, Gang Xu, Yujia Xie, Minli Tao, Wenqin Zhang. Thiourea modified polyacrylnitrile fibers as efficient Pd(II) scavengers. RSC Advances. 2016. Vol. 6, Iss. 63. pp. 58088–58098. DOI: 10.1039/C6RA09689A.
9. Analytical chemistry of platinum group metals: Reviews. Compiled and edited by Yu. A. Zolotov, G. M. Varshal, V. M. Ivanov. 2nd edition. Moscow : KomKniga, 2005. 591 p.
10. Rabiul Awual Md., Munjur Hasan Md., Naushad Mu., Shiwaku Hideaki, Yaita Tsuyoshi. Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sensors and Actuators B: Chemical. 2015. Vol. 209. pp. 790–797. DOI: 10.1016/j.snb.2014.12.053.
11. Polivtseva S., Oja Acik I., Krunks M., Tonsuaadu K., Mere A. Thermoanalytical study of precursors for tin sulfide thin films deposited by chemical spray pyrolysis. Journal of Thermal Analysis and Calorimetry. 2015. Vol. 121. pp. 177–185. DOI: 10.1007/s10973-015-4580-6.
12. Shivrin G. N., Godovitskaya T. A., Shivrina E. M., Kolmakova L. P. Thiourea in non-ferrous metallurgy: Monograph. Ryazan : NP “Golos gubernii”, 2010. 144 p.
13. Ginzburg S. I., Ezerskaya N. A., Prokofieva I. V., Fedorenko N. V. et al. Analytical chemistry of platinum metals. Moscow : Nauka, 1972. 616 p.
14. Logvinenko I. A., Vlasova T. V., Sinegribov V. A., Smetannikov A. F. et al. Procedure for sorption extraction of valuable metals. Patent RF, No. 2394109. Applied: 2009100432/02. Published: 10.07.2010. Bulletin No. 19.
15. Jeong-yi Moon, Syouhei Nishihama, Kazuharu Yoshizuka. Recovery of platinum and palladium from spent automobile catalyst by solvent-impregnated resins. Solvent Extraction and Ion Exchange. 2018. Vol. 36, Iss. 5. pp. 470–479. DOI: 10.1080/07366299.2018.1527806.
16. Volchkova E. V., Buslaeva T. M., Safronova I. E. Copper(II) complexes formed with water-soluble β-furfuroxime. Tonkie khimicheskie tekhnologii. 2016. Vol. 11, No. 2. pp. 50–56.
17. Vorobiev-Desyatovskiy N. V., Kukushkin Yu. N., Sibirskaya V. V. Compounds of thiourea and its complexes with metal salts. Koordinatsionnaya khimiya. 1985. Vol. 11, No. 10. pp. 1299–1328.
18. Sibirskaya V. V., Kukushkin Yu. N. Thioamide complexes of platinum metals. Koordinatsionnaya khimiya. 1975. Vol. 1, No. 8. pp. 962–987.
19. TU 6-09-2025–86. Pure palladium (2) chloride (Minimum mass concentration of Pd: 59 %). Introduced: 15.02.1987.
20. GOST 4167–74. Reagents. Cupric chloride, 2-aqueous. Specifications. Introduced: 01.01.1975.
21. GOST 6344–73. Reagents. Thiourea. Specifications. Introduced: 01.01.1975.
22. GOST 8864–71. Reagents. Sodium diethyldithiocarbamate 3-aqueous. Specifications. Introduced: 01.07.1971.
23. GOST 11293–89. Gelatin. Specifications. Introduced: 01.07.1991.
24. GOST 5845–79. Reagents. Potassium-sodium tartrate, 4-aqueous. Specifications. Introduced: 01.01.1980.
25. GOST 20298–74. Ion-exchange resins. Cation exchangers. Specifications. Introduced: 01.01. 1976.
26. Synthesis of complex platinum group metal compounds. Reference book. Ed. by I. I. Chernyaev. Moscow : Nauka, 1972. 616 p.
27. Nielsch W. Die photometrische Bestimmung des Palladiums mit Thioharnstoff. Microchimica Acta. 1954. Vol. 42. pp. 532–538. DOI: 10.1007/BF01225860.
28. Podchaynova V. N., Simonova L. N. Analytical chemistry of elements. Copper: Monograph. Ed. by I. V. Pyatnitskiy. Moscow : Nauka, 1990. 279 p.
29. Bauer K. Analysis of organic compounds. 2nd revised edition. Moscow : Izdatinlit, 1953. 488 p.
30. Lebedev K. B., Kazantsev E. I., Rozmanov V. M., Pakholkov V. S., Chemezov V. A. Ion exchangers in non-ferrous metallurgy. Moscow : Metallurgiya, 1975. 351 p.
31. Mironov L. V., Tsvelodub L. Electron absorption spectra of univalent copper-, silver- and gold-thiourea complexes in aqueous solutions. Journal of Applied Spectroscopy. 1997. Vol. 64, Iss. 4. pp. 470–475.
32. Khan M. A., Schwing-Weill M. J. Stability and electronic spectra of the copper(II) chlorocomplexes in aqueous solutions. Inorganic Chemistry. 1976. Vol. 15, No. 9. pp. 2202–2205.
33. Pretsch E., Bühlmann P., Affolter C. Structure determination of organic compounds. Tables of spectral data. Translated from English. Moscow : Mir; BINOM. Laboratoriya znaniy. 2006. 439 p.
34. Aarts A. J., Desseyn H. O., Herman M. A. Palladium(ll) complexes with primary thioamides. Transition Metal Chemistry. 1978. No. 3. pp. 144–146.
35. Mishra A. K., Mishra S. B., Manav N., Kaushik N. K. Thermal and spectral studies of palladium(II) complexes. Journal of Thermal Analysis and Calorimetry. 2007. Vol. 90. pp. 509–515.
36. Nadeem S., Rauf M. K., Bolte M., Ahmad S., Tirmizi S. A. et al. Synthesis, characterization and antibacterial activity of palladium(II) bromide complexes of thioamides; X-ray structure of [Pd(tetramethylthiourea)4]Br2. Transition Metal Chemistry. 2010. Vol. 35. pp. 555–561. DOI: 10.1007/s11243-010-9363-0.
37. Orysyk S. I., Rybachuk L. N., Pekhnyo V. I., Orysyk V. V. Palladium(II) complexes with 1–Allyl – 3 – (2 – pyridyl)thiourea synthesis and spectroscopic characterization. Russian Journal of Inorganic Chemistry. 2011. Vol. 56, No. 11. pp. 1747–1751.
38. Pimneva L. A. Synthesis of complex oxides by thermolysis of the KU-2X8 sulfo cation exchanger. Sovremennye naukoemkie tekhnologii. 2006. No. 2. pp. 52–53.
39. Navlani-García M., Mori K., Salinas-Torres D., Kuwahara Y., Yamashita H. New approaches toward the hydrogen production from formic acid dehydrogenation over Pd-based heterogeneous catalysts. Frontiers in Materials. 2019. Vol. 6. Article 44. DOI: 10.3389/fmats.2019.00044.

Language of full-text russian
Full content Buy