Журналы →  Tsvetnye Metally →  2022 →  №4 →  Назад

KOLA MINING AND METALLURGICAL COMPANY: ON THE WAY OF SUSTAINABLE DEVELOPMENT
Название Thermodynamic modeling of oxidative roasting of nickel concentrate from matte separation in fluidized layer furnaces
DOI 10.17580/tsm.2022.04.02
Автор Popov V. A., Ryabushkin M. I., Tsemekhman L. Sh., Pakhomov R. A.
Информация об авторе

Gipronikel Institute LLC, Saint Petersburg, Russia:

V. A. Popov, Lead Researcher at the Pyrometallurgical Laboratory, Candidate of Technical Sciences

R. A. Pakhomov, Senior Researcher at the Pyrometallurgical Laboratory, Candidate of Technical Sciences, e-mail: pakhomovra@nornik.ru

 

Kola MMC, Monchegorsk, Russia:
M. I. Ryabushkin, First Deputy General Director – Chief Engineer, e-mail: RyabushkinMI1@kolagmk.ru

 

Saint Petersburg, Russia:
L. Sh. Tsemekhman, Editorial Board Member at Tsvetnye Metally, Doctor of Technical Sciences, Professor3, e-mail: lev.tsem1@gmail.com

Реферат

Processes of oxidative roasting of sulfide concentrates in fluidized bed furnaces are quite widely used in sulfide copper, copper-nickel and pyrite concentrates processing. After roasting, the calcine is usually either smelted or hydrometallurgically processed. The results of various laboratory studies and industrial practice of sulphide roasting published in literature. This article will focus on thermodynamic modeling of roasting of nickel concentrate from matte separation. By means of FactSage software thermodynamic modeling of oxidative roasting of nickel concentrate from matte separation has been performed within the temperature range of 300–1200 оC and lg pO2 range from -20 to -2. Areas of possible calcined products – sulfates, oxides, sulfides and metallic non-ferrous metals shown. According to calculation results, formation of sulfates of non-ferrous metals is observed in low-temperature area, the area is moving to high temperatures with an increase in the oxidizing capacity of gas phase. In the area of medium temperatures, oxide phases, including spinels, observed. Sulfide and metal phases exist at the upper limit of the investigated temperature range. Comparison of the calculation results with the research data of real calcines from fluidized bed furnaces made using SEM and EMPA methods. It is observed that processes in real furnaces can be successfully calculated based on the assumption of thermodynamic equilibrium in fluidized bed. It was determined that calculation of the oxidation process using FactSage algorithms and databases is quite correct and can be used, among other things, when implementing control systems for industrial furnaces.
The authors would like to thank director of the Research & Development Department at Gipronikel Institute Doctor of Technical Sciences L. B. Tsymbulov for providing advisory support.
The authors would like to thank Yu. A. Savinova, Candidate of Technical Sciences, senior researcher at Gipronikel Institute, for her contribution to the research work.

Ключевые слова Sulphide nickel concentrate, thermodynamic modeling, FactSage, fluidized bed furnace, oxidative roasting; oxygen partial pressure, phase composition of calcine
Библиографический список

1. Tsemekhman L. Sh., Paretskiy V. M. Modern processing techniques for copper-nickel sulphide concentrates: A review. Tsvetnye Metally. 2020. No. 1. pp. 24–31. DOI: 10.17580/tsm.2020.01.04.
2. Xi Z., Wang Z., Li X. et al. Improving the desulfurization degree of highgrade nickel matte via a two-step oxidation roasting process. Metallurgical and Materials Transactions B. 2018. Vol. 49. pp. 1834–1840.
3. Shamsuddin M., Sohn H. Y. Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy — A Review: Part 1. Sulfide roasting and smelting. JOM. 2019. Vol. 71. pp. 3253–3265.
4. Dong Lu Lv G., Zhang T. A. et al. Roasting pre-treatment of high-sulfur bauxite for sulfide removal and digestion performance of roasted ore. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59. pp. 493–501.
5. Zhao Q., Xue J., Chen W. Upgrading of iron concentrate by fluidized-bed magnetizing roasting of siderite to magnetite in CO – H2 – N2 аtmosphere. Transactions of the Indian Institute of Metals. 2019. Vol. 72. pp. 1381–1391.
6. Chernyavskiy N. V., Roskolupa A. I., Batrak A. A. Fluidized bed co-combustion of carbon-containing material from ash dumps at anthracite thermal power plants with sludge. Power Technology and Engineering. 2012. Vol. 46. pp. 59–64.
7. Savinova Y. A., Popov V. A., Portov A. B. et al. Roasting of a sulfide polymetallic concentrate in a fluidized bed furnace. Russ. Metall. 2014. Vol. 2014. No. 5. P. 351–357.
8. Yu D., Utigard T. A., Barati M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate: Part II. sulfation roasting. Metallurgical and Materials Transactions B. 2014. Vol. 45. pp. 662–674.
9. Blatov I. A., Klementiev V. V., Portov A. B., Tsemekhman L. Sh. Oxidation of copper-nickel sulphide concentrate: Understanding the process kinetics. Tsvetnye Metally. 1995. No. 4. pp. 48–50.
10. Blatov I. A., Klementiev V. V., Portov A. B., Tsemekhman L. Sh., Parshukov A. B. Oxidizing roasting of copper-nickel ore concentrates: Some aspects of process kinetics and development. Metally. 1999. No. 2. pp. 21–28.
11. Habashi F. Chalcopyrite, its chemistry and metallurgy. Ch. 5. New York, 1978. pp. 45–62.
12. Mao C., Lin J. Kinetic study of roasting of nickel sulfide concentrates. Zhongnan Kuangye Xuegnan Xuebao (China). 1988. Vol. 19. No. 3. pp. 333–339.
13. Margulis E. V. On the theory behind oxidizing roasting of sulphide materials. Non-ferrous metallurgy and analysis techniques. Trudy VNIITsvetmeta: Research papers. 1962. No. 7. pp. 9–30.
14. Astafiev A. F., Alekseev Yu. V. Fluidized bed roasting of nickel industry middlings. Moscow : Metallurgiya, 1997. 255 p.
15. Asaki Z., Mori S., Ikeda M., Kondo Y. Oxidation of pyrrhotite particles falling through a vertical tube. Metallurgical Transactions B. 1985. Vol. 16, No. 3. pp. 627–638.
16. Margulis E. V. The theory of dissociative adsorption behind sulphide oxidation. Trudy VNIITsvetmeta: Research papers. 1968. No. 17. pp. 5–10.
17. Diaz C., Conard B. R., Gordon J. R., Marcuson S. W., Burgess K. I. Deep roasting of nickel concentrate. CIM Bulletin. 1994. Vol. 87, No. 981. pp. 72–78.
18. Portov A. B., Ozerov S. S., Savinova Yu. A., Tsemekhman L. Sh. Processing of technology of ore copper-nickel concentrate roasting at aggregativelaboratory setting of boiling layer. Tsvetnye Metally. 2014. No. 9. pp. 44–51.
19. Yu D., Utigard T., Barati M. Fluidized oxidation-sulfation roasting of nickel sulfide concentrate. Part I. oxidation roasting. Metallurgical and Materials Transactions B. 2014. Vol. 45, No. 2. pp. 653–661.
20. Sinyaver B. V. The practices of nickel concentrate roasting and smelting at INCO Thompson (Canada). Tsvetnaya metallurgiya. 1964. No. 4. pp.44–49.
21. Orr R., Warner A. Fluid bed roasting in the Thompson smelter. The 13th Annual Conference of Metallurgists. Toronto (Ontario, Canada). 1974. 21 p.
22. Frents G. S. Oxidation of metal sulphides. Moscow : Nauka, 1964. 191 p.
23. Ganguly N. D., Mukherjee S. K. Studies on mechanism and kinetics of the oxidation of copper sulphide. I. Oxidation of copper sulphide in a fixed bed. Chemical Engineering Science. 1967. Vol. 22, Iss. 8. pp. 1091–1105.
24. Oprea F. Mechanism of the oxidation of iron and copper sulfides. Rudarskometalurski zbornik. 1963. No. 3. pp. 193–212.
25. Baram I. I. Macrokinetic regularities behind oxidizing roasting of sulphides. Kompleksnoe ispolzovanie mineralnogo syrya. 1984. No. 6. pp. 14–17.
26. Okunev A. I., Galimov M. D. Oxidation of iron and sulphur in oxide/sulphide systems. Moscow : Nauka, 1983. 126 p.
27. Rosenqvist T., Hofseth A. Phase relations and thermodynamics of the copper-iron-sulphur-oxygen system at 700–1000 oC. Scandinavian Journal of Metallurgy. 1980. Vol. 9, No. 1. pp. 129–138.
28. Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G. et al. FactSage Thermochemical Software and Databases 2010–2016. Calphad. 2016. Vol. 54. pp. 35–53.
29. Bale C. W., Belisle E., Chartrand P., Decterov S. A., Eriksson G. et al. Reprint of: FactSage thermochemical software and databases 2010–2016. Calphad. 2016. Vol. 55. pp. 1–19.
30. Gheribi A. E., Harvey J. P., Belisle E., Robelin C., Chartrand P. et al. Use of a biobjective direct search algorithm in the process design of material science applications. Optimization and Engineering. 2016. Vol. 17, No. 1. pp. 27–45.
31. Popov V. A., Savinova Yu. A. Thermodynamic modeling of oxidative roasting of copper concentrate from high matte separation. Tsvetnye Metally. 2020. No. 9. pp. 14–18. DOI: 10.17580/tsm.2020.09.02.
32. Krishtal M. M., Yasnikov I. S., Polunin V. I., Filatov A. M., Ulianinkov A. G. Scanning electron microscopy and X-ray microanalysis: Examples of practical application. Moscow : Tekhnosfera, 2009. 208 p.
33. Goldstein J., Newbury D., Echlin P. et al. Scanning electron microscopy and X-ray microanalysis. Translated from English. Ed. By V. I. Petrov. Moscow : Mir, 1984. Part 1. 296 p.; Part 2. 348 p.
34. Tsemekhman L. Sh., Fomichev V. B., Ertseva L. N., Kaytmazov N. G., Kozyrev S. M. et al. Atlas of mineral raw materials, technological industrial products and marketable products of Polar Division OJSC MMC “Norilsk Nickel”. Moscow : “Ore and Metals” Publishing House, 2010. 336 p.
35. Ertseva L. N., Tsemekhman L. Sh., Tsymbulov L. B. et al. On the structure of solid nickel mattes. Tsvetnye Metally. 2008. No. 3. pp. 21–23.
36. Savinova Yu. A., Rumyantsev D. V., Mishina O. Yu., Banniko va S. A., Somov P. A. Examining the material composition and morphology of finely dispersed metallurgical dusts by scanning electron/ion microscopy and X-ray microanalysis. Proceedings of the 28th Russian Conference on Electron Microscopy, 2020. 5–10 September 2020, Chernogolovka. Available at: https://riccem.org/wp-content/uploads/2020/09/RCEM2020_V2conf_10.09.pdf#page=111
37. Savinova Yu. A. Developing a technology to process sulphide concentrates of non-ferrous metals that involves oxidizing roasting in fluidized bed furnaces : dissertation of Candidate of Technical Sciences. Saint Petersburg, 2018. 155 p.

Language of full-text русский
Полный текст статьи Получить
Назад