Журналы →  Chernye Metally →  2022 →  №5 →  Назад

Welding and surfacing
Название Investigation of the effect of the slag system of coated electrodes on the efficiency of metal inoculation of a welding bath of low-carbon steel
DOI 10.17580/chm.2022.05.11
Автор M. A. Sheksheev, S. V. Mikhailitsyn, A. B. Sychkov, A. N. Emelyushin
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

M. A. Sheksheev, Cand. Eng., Associate Professor, Dept. of Machines and Technologies of Metal Forming and Mechanical Engineering, e-mail: shecsheev@yandex.ru
S. V. Mikhailitsyn, Cand. Eng., Associate Professor, Dept. of Machines and Technologies of Metal Forming and Mechanical Engineering, e-mail: svmikhaylitsyn@mail.ru
A. B. Sychkov, Dr. Eng., Professor, Dept. of Foundry Processes and Materials Science, e-mail: absychkov@mail.ru
A. N. Emelyushin, Dr. Eng., Professor, Dept. of Foundry Processes and Materials Science, e-mail: emelushin@magtu.ru

Реферат

Welded joints are subject to increased requirements for structural condition, as well as a complex of mechanical and special properties. A promising way to regulate the structure of the deposited metal directly in the welding process is its inoculation with ultrafine refractory components. This article presents the results of a study of the structure and mechanical properties of metal deposited with electrodes with basic and rutile coatings containing 5% ultrafine titanium monocarbide powder. It is shown that the addition of ultrafine TIC powder to the electrode coating of the basic type leads to a decrease in the average cross-sectional area of crystallites in the deposited metal by 5 times, from 73000 - 74000 μm2 to 14,000 - 15,000 μmand an increase in the shape factor by 1,5 times, from 0,27 to 0,46. The addition of TiC to the rutile-type electrode coating leads to a decrease in the average cross-sectional area of crystallites in the deposited metal by 12-13 times, from 163000 - 164000 μm2 to 11000 to 12000 μmand an increase in the shape factor by 2 times, from 0,28 to 0,57. It is established that the effect of inoculation is manifested when using both basic-type coatings and rutile-type coatings. This is due to the fact that the viscosity of liquid welding slags in the crystallization temperature range of a steel welding bath is at the same level of 0,15 – 0,2 Pa·s, and remains so in the flesh up to temperatures of 1325 - 1350 °С, both for basic and rutile slag systems, and equally affects the process of assimilation of ultrafine refractory particles by the metal of the welding bath. It is shown that, despite the inoculation of the metal of the welding bath with refractory particles and the realization of the effect of volumetric crystallization, the final shape of the crystallites depends on the temperature gradient when the heat of the bath is removed into the base metal.
The work was carried out within the framework of state support for young Russian scientists — grant of the President of the Russian Federation (No. MK-3849.2021.4).

Ключевые слова Welding, surfacing, coated electrode, welding bath, inoculation, modification, ultrafine powder, titanium carbide, metal structure, hardness
Библиографический список

1. Khlusova Е. I., Sych О. V. Creation of cold-resistant structural materials for the Arctic. History, experience, current state. Innovatsii. 2018. No. 11. pp. 85–92.
2. Poletskov P. P., Kuznetsova А. S., Alekseev D. Yu., Nikitenko О. А., Lopatina Е. V. Analysis of world-class developments in the field of production of hot-rolled high-strength cold-resistant flat products with a yield strength of ≥ 600 N/mm2. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2020. Vol. 18. No. 4. pp. 32–38.
3. Rodriguez De Vecchis R., Wang X., Sridar S., Pataky G. J., Xiong W. Introducing Heusler intermetallics for synergic effect of grain refinement and precipitation strengthening in highstrength low-alloy steels. Journal of Alloys and Compounds. 2022. Vol. 904. p. 163885.
4. Poletskov P. P., Gulin A. E., Emaleeva D. G., Kuznetsova А. S., Alekseev D. Yu. et. al. Analysis of current research directions in the field of production of multifunctional materials for extreme operating conditions. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2021. Vol. 19. No. 3. pp. 109–114.

5. Poletskov P. P., Nikitenko O. A., Kuznetsova A. S., Salganik V. M. The study of transformation kinetics for overcooled austenite of the new high-strength steel with increased cold resistance. CIS Iron and Steel Review. 2020. Vol. 19. pp. 56–59.
6. Polteskov P. P., Kuznetsova A. S., Koptseva N. V., Nikitenko O. A., Yakovleva I. L. Study of structure of high-strength cold-resistant steel after quenching and tempering. CIS Iron and Steel Review. 2021. Vol. 22. pp. 61–65.
7. Dong Y., Teixeira A. P., Guedes Soares C. Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach. Marine Structures. 2019. Vol. 65. pp. 215–228.
8. Trško L., Lago J., Jambor M., Nový F., Bokůvka O., Florková Z. Microstructure and residual stress analysis of Strenx 700 MC welded joint. Production Engineering Archives. 2020. Vol. 26. No. 2. pp. 41–44.
9. Tomków J., Łabanowski J., Fydrych D., Rogalski G. Cold cracking of S460N steel welded in water environment. Materials Performance and Characterization. 2018. Vol. 25. No. 3. pp. 131–136.
10. Schneider C., Ernst W., Schnitzer R., Staufer H., Vallant R. et al. Welding of S960MC with undermatching filler material. Welding in the World. 2018. Vol. 62. No. 4. pp. 801–809.
11. Sokolov G. N., Zorin I. V., Artemyev А. А., Elsukov S. К., Fastov S. А., Fedosyuk I. V. et. al. Surfacing of composite heat- and wear-resistant alloys using materials containing nanoparticles of refractory chemical compounds. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. No. 4. pp. 61–67.
12. Zorin I. V., Dubtsov Yu. N., Sokolov G. N., Lysak V. I., Andriyanov Yu. V. et. al. Influence of particles of refractory chemical compounds on metal transfer in the welding arc during surfacing with composite wire. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. No. 4. pp. 43–48.
13. Sokolov G. N., Zorin I. V., Artem'ev A. A., Elsukov S. K., Dubtsov Y. N. et al. Thermal- and wear-resistant alloy arc welding depositions using composite and flux-cored wires with TiN, TiCN, and WC nanoparticles. Journal of Materials Processing Technology. 2019. Vol. 272. pp. 100–110.
14. Mikhaylitsyn S. V., Sheksheev М. А., Sychkov А. B. Design of welding electrodes for the oil and gas complex. Magnitogorsk: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2016. 182 p.
15. Sidlin Z. А. Production of electrodes for manual arc welding. Kiev: Ekotekhnologiya, 2009. 464 p.
16. Sheksheev М. А., Mikhaylitsyn S. V., Shiryaeva Е. N. Functional materials for welding and surfacing. Magnitogorsk: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2022. 208 p.
17. Samsonov G. V., Vinitskiy I. М. Refractory compounds. Moscow: Metallurgiya, 1976. 560 p.
18. GOST 6996–66. Welded joints. Methods of mechanical properties determination. Introduced: 01.01.1967. Moscow: Izdatelstvo standartov, 1966.

Language of full-text русский
Полный текст статьи Получить
Назад