Journals →  CIS Iron and Steel Review →  2022 →  #1 →  Back

Metal Science and Metallography
ArticleName TRIP steels: the features of chemical composition and structure, prospects of application (overview)
DOI 10.17580/cisisr.2022.01.13
ArticleAuthor D. A. Gorlenko, D. V. Konstantinov, M. A. Polyakova, M. Dabala

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

D. A. Gorlenko, Cand. Eng., Associate Prof., Dept. of Casting Processes and Materials Science, e-mail:
D. V. Konstantinov, Cand. Eng., Head of the Dept. of International Affairs
M. A. Polyakova, Dr. Eng., Associate Prof., Dept. of Materials Processing Technologies


University of Padova (Padova, Italy):
M. Dabalá, Dr. Eng., Prof.


A. G. Korchunov, Dr. Eng., Prof., Head of the Dept. of Designing and Operation of Metallurgical Equipment participated in this work.


This article provides a brief overview of steels prone to transformation induced plasticity (TRIP), which belong to the class of advanced high-strength steels (AHSS). The necessary set of properties in these steels is formed due to the partial preservation of supercooled austenite in the structure. The article considers the mechanism of TRIP transformation, which depends on the value of the temperature of the beginning of the martensitic transformation. It is shown that the amount and stability of supercooled austenite can be influenced by varying the temperature and time parameters of heat treatment. In addition to heat treatment, the qualitative and quantitative parameters of metastable austenite are significantly influenced by the alloying of TRIP steels, and the alloying elements themselves can be divided into several main groups (ferrite-stabilizing, increasing the stability of supercooled austenite and micro-alloying). In the final part of the article, the prospect of using TRIP steels in the aerospace industry is considered, where reducing the metal consumption of parts is a priority. It is also worth considering that the production of parts using additive technologies is widespread in the aerospace industry. Therefore, the use of TRIP steels as a material in additive manufacturing leads to the formation of a new concept for creating parts with a unique set of properties, primarily with high structural strength, light weight and the possibility of self-adaptation to extreme external exposures.

The research was carried out under contract No. 13.2251.21.0107 on the topic "Investigation on 3D-printing of Advanced High Strength Steels with TRIP effect for realization of self-adapting aerospace structural elements", funded by the Ministry of Science and Education of the Russian Federation within the joint program for science and technology cooperation and implementation of joint call for Russian-Italian projects for 2021-2023.

keywords TRIP steels, chemical composition, alloying, microstructure, mechanical properties, phase composition, heat treatment

1. Matsumura O., Sakuma Y., Takechi H. Retained Austenite in 0.4C-Si-1.2Mn Steel Sheet Intercritically Heated and Austempered. ISIJ International. 1992. Vol. 32 Iss. 9. pp. 1014-1020. DOI: 10.2355/isijinternational.32.1014
2. Sakuma Y., Matsumura O., Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metallurgical and Materials Transactions A. 1991. Vol. 22. pp. 489–498. DOI: 10.1007/BF02656816
3. Bouaziz O., Zurob H., Huang M.. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications. Steel Research International. 2013. Vol. 84. pp. 937–947. DOI: 10.1002/srin.201200288
4. Fonstein N. Evolution of Strength of Automotive Steels to Meet Customer Challenges. In: Advanced High Strength Sheet Steels. Springer, Cham. 2015. DOI: 10.1007/978-3-319-19165-2_1
5. Soleimani M., Kalhor A., Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Materials Science and Engineering: A. 2020. Vol. 795. 23 September 2020. 140023. DOI: 10.1016/j.msea.2020.140023
6. Jacques P., Furnémont Q., Mertens A., Delannay F. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity. Philosophical Magazine A. 2001. Vol. 81. Iss. 7. pp. 1789-1812. DOI: 10.1080/01418610108216637
7. Xiaodong Tan, Huansheng He, Wenjun Lu, Liu Yang, Bo Tang, Jun Yan, Yunbo Xu, Di Wu. Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hotrolled TRIP steels. Materials Science and Engineering: A. 2020. Vol. 771. 13 January. 138629. DOI: 10.1016/j.msea.2019.138629
8. Grassel O., Krüger L., Frommeyer G., Meyer L. W. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application. International Journal of Plasticity. 2000. Vol. 16. Iss. 10–11. pp. 1391-1409. DOI: 10.1016/S0749-6419(00)00015-2
9. De Cooman B.C. Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science. 2004. Vol. 8. Iss. 3–4. June–August. pp. 285-303. DOI: 10.1016/j.cossms.2004.10.002
10. Speer J., Matlock D. K., De Cooman B. C., Schroth J. G. Carbon partitioning into austenite after martensite transformation. Acta Materialia. 2003. Vol. 51. Iss. 9, 23 May. pp. 2611-2622. DOI: 10.1016/S1359-6454(03)00059-4
11. Dong X. X., Shen Y. F., Xue W. Y., Jia N. Improved work hardening of a medium carbon-TRIP steel by partial decomposition of retained austenite. Materials Science and Engineering: A. 2021. Vol. 803. 28 January. 140504. DOI: 10.1016/j.msea.2020.140504
12. Edmonds D. V., He K., Rizzo F. C., De Cooman B. C., Matlock D. K., Speer J. G. Quenching and partitioning martensite—A novel steel heat treatment. Materials Science and Engineering: A. 2006. Vol. 438–440. 25 November. pp. 25-34. DOI: 10.1016/j.msea.2006.02.133
13. Li Liu, Binbin He, Mingxin Huang. The Role of Transformation- Induced Plasticity in the Development of Advanced High Strength Steels. Advanced Engineering Materials. 2018. Vol. 20. Iss. 6. 1701083. DOI: 10.1002/adem.201701083
14. Sugimoto K.-I., Hojo T., Kobayashi J. Critical assessment 29: TRIP-aided bainitic ferrite steels. Materials Science and Technology. 2017. Vol. 33. Iss. 17. pp. 2005–2009. DOI: 10.1080/02670836.2017.1356014
15. Clarke A. J., Speer J. G., Miller M. K., Hackenberg R. E., Edmonds D. V., Matlock D. K., Rizzo F. C., Clarke K. D., De Moor E. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Materialia. 2008. Vol. 56. Iss. 1. pp. 16-22. DOI: 10.1016/j.actamat.2007.08.051
16. Girault E., Jacques P. J., Ratchev P., Van Humbeeck J., Verlinden B., Aernoudt E. Study of the temperature dependence of the bainitic transformation rate in a multiphase TRIP-assisted steel. Materials Science and Engineering: A. 1999. Vol. 273–275. 15 December. pp. 471-474. DOI: 10.1016/S0921-5093(99)00330-5
17. Suh D. W., Ryu J. H., Joo M. S. et al. Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels. Metallurgical and Materials Transactions A. 2013. Vol. 44. pp. 286–293. DOI: 10.1007/s11661-012-1402-3
18. Suh D. W., Kim S.-J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges. Scripta Materialia. 2017. Vol. 126. 1 January. pp. 63-67. DOI: 10.1016/j.scriptamat.2016.07.013

19. Field D. M., Garza-Martinez L. G., Van Aken D. C. Processing and Properties of Medium-Mn TRIP Steel to Obtain a Two-Stage TRIP Behavior. Metallurgical and Materials Transactions A. 2020. Vol. 51. pp. 4427–4433. DOI: 10.1007/s11661-020-05901-2
20. Dingting Han, Yunbo Xu, Jiayun Zhang, Fei Peng, Weihua Sun. Relationship between crystallographic orientation, microstructure characteristic and mechanical properties in cold-rolled 3.5Mn TRIP steel. Materials Science and Engineering: A. 2021. Vol. 821. 21 July. 141625. DOI: 10.1016/j.msea.2021.141625
21. Lee Y.-K., Han J. Current opinion in medium manganese steel. Materials Science and Technology. 2015. Vol. 31. Iss. 7. Modern Steels 2014. pp. 843-856. DOI: 10.1179/1743284714Y.0000000722
22. Cai Z. H., Ding H., Xue X., Xin Q. B. Microstructural evolution and mechanical properties of hot-rolled 11 % manganese TRIP steel. Materials Science and Engineering: A. 2013. Vol. 560. 10 January. pp. 388-395. DOI: 10.1016/j.msea.2012.09.083
23. Zongbiao Dai, Hao Chen, Ran Ding, Qi Lu, Chi Zhang, Zhigang Yang, Sybrand van der Zwaag. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Materials Science and Engineering: R: Reports. 2021. Vol. 143. January. 100590. DOI: 10.1016/j.mser.2020.100590
24. Chowdhury P., Canadinc D., Sehitoglu H. On deformation behavior of Fe-Mn based structural alloys. Materials Science and Engineering: R: Reports. 2017, Vol. 122. December. pp. 1-28. DOI: 10.1016/j.mser.2017.09.002
25. Pierce D. T., Jimenez J. A., Bentley J., Raabe D., Wittig J. E. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Materialia. 2015. Vol. 100. November. pp. 178-190. DOI: 10.1016/j.actamat.2015.08.030
26. Kolokoltsev V. M., Vdovin K. N., Gorlenko D. A., Gulin A. E. Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates. CIS Iron and Steel Review. 2016. Vol. 11. pp 35-40. DOI: 10.17580/cisisr.2016.01.06
27. Fonstein N. TRIP Steels. In: Advanced High Strength Sheet Steels. Springer, Cham. 2015. DOI: 10.1007/978-3-319-19165-2_5
28. Stebner A. P., Olson G. B. (eds.). Proceedings of the International Conference on Martensitic Transformations: Chicago. The Minerals, Metals & Materials Series. DOI: 10.1007/978-3-319-76968-4_21
29. Bleck W., Xiaofei Guo, Yan Ma. The TRIP Effect and Its Application in Cold Formable Sheet Steels. Steel Research International. 2017. Vol. 88. Iss. 10. October. 1700218. DOI: 10.1002/srin.201700218
30. Sohrabi M. J., Mirzadeh H., Dehghanian C. Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels. Journal of Materials Engineering and Performance. 2020. Vol. 29. pp. 3233–3242. DOI: 10.1007/s11665-020-04798-7
31. Imai N., Komatsubara N., Kunishige K. Effect of Alloying Element and Microstructure on Mechanical Properties of Low-Alloy TRIP-Steels. CAMP-ISIJ. 1995. No. 8. pp. 572–575.
32. Ghosh G., Olson G. B. Simulation of paraequilibrium growth in multicomponent systems. Metallurgical and Materials Transactions A. 2001. Vol. 32. pp. 455–467. DOI: 10.1007/s11661-001-0062-5
33. Bhadeshia H. K. D. H., Christian J. W. Bainite in steels. Metallurgical and Materials Transactions A. 1990. Vol. 21. pp. 767–797. DOI: 10.1007/BF02656561
34. Luo H. W., Dong H. New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing. Materials Science and Engineering: A. 2015. Vol. 626. 25 February. pp. 207-212. DOI: 10.1016/j.msea.2014.12.049
35. Sun S, Pugh M. Manganese partitioning in dual-phase steel during annealing. Materials Science and Engineering: A. 2000. Vol. 276. Iss. 1–2. 15 January. pp. 167-174. DOI: 10.1016/S0921-5093(99)00261-0
36. Katsamas A. I., Vasilakos A. N., Haidemenopoulos G. N. Simulation of intercritical annealing in low-alloy TRIP steels. Steel Research. 2000. Vol. 71. Iss. 9. pp. 351-356. DOI: 10.1002/srin.200001328
37. Penkin A. G., Terentyev V. F., Roshchupkin V. V., Slizov A. K., Sirotinkin V. P. Analysis of TRIP-steel deformation stages by acoustic emission method. Deformaciya i razrushenie. 2016. No. 10. pp. 35-41.
38. Konstantinov D. V., Bzovsky K., Korchunov A. G., Kujiak R., Petshik M., Shiryaev O. P. Multiscale modeling of structuralphase transformations in steel during drawing. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2016. Vol. 14. No. 3. pp. 90-98.
39. Linderov M. L., Segel C., Weidner A., Biermann H., Vinogradov A. Yu. Investigation of deformation processes in TRIP/TWIP steels using acoustic emission and scanning electron microscopy. Fizika metallov i metallovedenie. 2018. Vol. 119. No. 4. pp. 407-414.
40. Burzhanov A. A., Galkin M. P., Filippov G. A. Peculiarities of structure state and failure of TRIP-steel 23Cr15Ni5SiMo3Mn under conditions of cyclic stresses. Problemy chernoy metallurgii i materialovedeniya. 2019. No. 2. pp. 73-76.
41. Burzhanov A. A., Galkin M. P., Guk V. V., Branitskaya E. A., Filippov G. A. Affect of structure state and microalloying by rare earth metals on corrosion resistance of TRIP steel with metastable austenite. Problemy chernoy metallurgii i materialovedeniya. 2019. No. 3. pp. 86-94.
42. Zaefferer S., Ohlert J., Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Materialia. 2004. Vol. 52. Iss. 9. 17 May. pp. 2765-2778. DOI: 10.1016/j.actamat.2004.02.044
43. Huang J., Poole W. J., Militzer M. Austenite formation during intercritical annealing. Metallurgical and Materials Transactions A. 2004. Vol. 35. pp. 3363–3375. DOI: 10.1007/s11661-004-0173-x
44. Vandijk N., Butt A., Zhao L., Sietsma J., Offerman S., Wright J., Vanderzwaag S. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Materialia. 2005. Vol. 53. Iss. 20. December. pp. 5439-5447. DOI: 10.1016/j.actamat.2005.08.017
45. Jacques P. J., Delannay F., Ladrière J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metallurgical and Materials Transactions A. 2001. Vol. 32. pp. 2759–2768. DOI: 10.1007/s11661-001-1027-4
46. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering. 2008. Vol. 8. Iss. 2. pp. 103-117. DOI: 10.1016/S1644-9665(12)60197-6
47. Zhu X., Li W., Zhao H., Jin X. Effects of cryogenic and tempered treatment on the hydrogen embrittlement susceptibility of TRIP-780 steels. International Journal of Hydrogen Energy. 2013, Vol. 38. Iss. 25. 21 August. pp. 10694-10703. DOI: 10.1016/j.ijhydene.2013.05.113
48. Timokhina I. B., Hodgson P. D., Pereloma E. V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metallurgical and Materials Transactions A. 2004. Vol. 35. pp. 2331–2341. DOI: 10.1007/s11661-006-0213-9
49. Shih-Che Chen, Cheng-Yao Huang, Yuan-Tsung Wang, Ching-Yuan Huang, Hung-Wei Yen. Role of the crystallographic texture in anisotropic mechanical properties of a newly-developed hotrolled TRIP steel. Materials Science and Engineering: A. 2020. Vol. 790. 14 July. 139683. DOI: 10.1016/j.msea.2020.139683
50. Jun H. J., Park S.H., Choi S. D., Park C. G. Decomposition of retained austenite during coiling process of hot rolled TRIP-aided steels. Materials Science and Engineering: A. 2004. Vol. 379. Iss. 1–2. 15 August. pp. 204-209. DOI: 10.1016/j.msea.2004.01.029
51. Ramazani A., Quade H., Abbasi M., Prahl U. The effect of martensite banding on the mechanical properties and formability of TRIP steels. Materials Science and Engineering: A. 2016. Vol. 651. 10 January. pp. 160-164. DOI: 10.1016/j.msea.2015.10.111
52. Yong Li, San Martín D., Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation. Journal of Materials Science & Technology. 2021. Vol. 91. 20 November. pp. 200-214. DOI: 10.1016/j.jmst.2021.03.020
53. Wang J., Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metallurgical and Materials Transactions A. 2001. Vol. 32. pp. 1527–1539. DOI: 10.1007/s11661-001-0240-5
54. Bhadeshia H. K. D. H., Edmonds D. V. The bainite transformation in a silicon steel. Metallurgical and Materials Transactions A. 1979. Vol. 10. pp. 895–907. DOI: 10.1007/BF02658309
55. Cai Z. H., Cai B., Ding H., Chen Y., Misra R. D. K. Microstructure and deformation behavior of the hot-rolled medium man ganese steels with varying aluminum-content. Materials Science and Engineering: A. 2016. Vol. 676. 31 October. pp. 263-270. DOI: 10.1016/j.msea.2016.08.119

56. Jacques P. J., Girault E., Mertens A., Verlinden B., van Humbeeck J., Delannay F. The Developments of Cold-rolled TRIPassisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels. ISIJ International. 2001. Vol. 41. Iss. 9. pp. 1068-1074. DOI: 10.2355/isijinternational.41.1068
57. He-song Wang, Jian Kang, Wei-xue Dou, Yuan-xiang Zhang, Guo Yuan, Guang-ming Cao, Misra R. D. K., Guo-dong Wang. Microstructure and mechanical properties of hot-rolled and heattreated TRIP steel with direct quenching process. Materials Science and Engineering: A. 2017. Vol. 702. 15 August. pp. 350-359. DOI: 10.1016/j.msea.2017.07.039
58. Kim S. J., Lee C. G., Choi I. et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets. Metallurgical and Materials Transactions A. 2001. Vol. 32. pp. 505–514 . DOI: 10.1007/s11661-001-0067-0
59. Zhaoli Zeng, Kolan Madhav Reddy, Shuangxi Song, Junfeng Wang, Li Wang, Xiaodong Wang. Microstructure and mechanical properties of Nb and Ti microalloyed lightweight δ-TRIP steel. Materials Characterization. 2020. Vol. 164. June. 110324. DOI: 10.1016/j.matchar.2020.110324
60. Najafi Y., Malek Ghaini F., Palizdar Y., Gholami Shiri S., Pakniat M. Microstructural characteristics of fusion zone in continuous wave fiber laser welded Nb-modified δ-TRIP steel. Journal of Materials Research and Technology. 2021. Vol. 15. November–December. pp. 3635-3646. DOI: 10.1016/j.jmrt.2021.09.116
61. Sugimoto K., Sakaguchi J., Iida T., Kashima T.. Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel. ISIJ International. 2000. Vol. 40. Iss. 9. pp. 920-926. DOI: 10.2355/isijinternational.40.920
62. Sugimoto K., Nakano K., Song S., Kashima T. Retained Austenite Characteristics and Stretch-flangeability of High-strength Low-alloy TRIP Type Bainitic Sheet Steels. ISIJ International. 2002. Vol. 42. Iss. 4. pp. 450-455. DOI: 10.2355/isijinternational.42.450
63. Peijun Hou, Yuan Li, Dongchul Chae, Yang Ren, Ke An, Hahn Choo. Lean duplex TRIP steel: Role of ferrite in the texture development, plastic anisotropy, martensitic transformation kinetics, and stress partitioning. Materialia. 2021. Vol. 15. March. 100952. DOI: 10.1016/j.mtla.2020.100952
64. Zackay V. F., Parker V. F., Fahr D. et al. Materials used in automobile manufacture - current state and perspectives. Journal De Physique IV. 1967. No. 3. pp. 31-40.
65. Galan J., Samek L. Advanced high strength steels for automotive industry. Revista de Metalurgia. 2012. No. 48. pp. 118–131.
66. Terentyev V. F., Terekhov A. A., Prosvirnin D. V., Konovalov A. V., Goldberg M. A. Mechanical properties of perspective TRIPsteel used in automobile industry. Perspektivnye materialy. 2014. No. 11. pp. 41-47.
67. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering. 2008. No. 8. pp. 103-117.
68. Bast J. L., Lehr J. The Increasing Sustainability of Cars, Trucks, and the Internal Combustion Engine. Heartland Policy Study. 2000. No. 95. pp. 1-69.
69. Dargay J., Gately D. Income's effect on car and vehicle ownership, worldwide: 1960-2015. Transport. Res. a Pol. 1999. No. 33. pp. 101-138.
70. Terentyev V. F., Slizov A. K., Prosvirnin D. V. Assessment of optimal quantity of deformational martensite for thin sheet austenitemartensite TRIP-steel of critical purpose. Deformatsiya i razrushenie materialov. 2017. No. 3. pp. 33-37.
71. Terentyev V. F., Korableva S. A. Fatigue strength of high alloyed corrosion resistant TRIP-steels (review). Deformatsiya i razrushenie materialov. 2012. No. 5. pp. 2-11.
72. Terentyev V. F., Slizov A. K., Prosvirnin D. V., Ashmarin A. A., Sirotinkin V. P., Rybalchenko O. V., Kaplan M. A., Baikin A. S. Affect of removal of surface layer on mechanical properties and type of tensile curves of thin sheet austenite-martensite TRIP-steel. Deformatsiya i razrushenie materialov. 2017. No. 12. pp. 16-20.
73. Herzog D., Seyda V., Wycisk E., Emmelmann C, Additive manufacturing of metals. Acta Materialia. 2016. Vol. 117. pp. 371–392. DOI: 10.1016/j.actamat.2016.07.019.
74. Lewandowski J. J., Seifi M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annual Review of Materials Research. 2016. Vol. 46. pp. 151–186. DOI: 10.1146/annurevmatsci-070115-032024.
75. Wang Y. M., Voisin T., McKeown J. T., Ye J., Calta N. P., Li Z., Zeng Z., Zhang Y., Chen W., Roehling T. T., Ott R.T., Santala M. K., Depond P. J., Matthews M. J., Hamza A. V., Zhu T. Additively manufactured hierarchical stainless steels with high strength and ductility, Nature Materials. 2018. Vol. 17. pp. 63–71. DOI: 10.1038/NMAT5021

Full content TRIP steels: the features of chemical composition and structure, prospects of application (overview)