Журналы →  Tsvetnye Metally →  2022 →  №10 →  Назад

REACTOR CONSTRUCTION MATERIALS
Название Effect of substructural inhomogeneity on the anisotropy of physical and mechanical properties of textured materials
DOI 10.17580/tsm.2022.10.02
Автор Isaenkova M. G., Krymskaya O. A.
Информация об авторе

National Research Nuclear University MEPhI, Moscow, Russia:

M. G. Isaenkova, Professor, Doctor of Physics & Mathematics Sciences, e-mail: MGIsaenkova@mephi.ru
O. A. Krymskaya, Associate Professor, Candidate of Physics & Mathematics Sciences, e-mail: OAKrymskaya@mephi.ru

Реферат

Today, anisotropy of the physical and mechanical properties of textured materials is mainly calculated based on average properties of a single crystal and information about the volume percent of grains that have different orientations, which can be determined with the help of distribution function. It is a fact that, in addition to the crystallographic texture, substructural inhomogeneity develops in rolled materials, which manifests itself as a difference in the distortion of the crystalline lattice (hardening) and elastic microstrains in grains belonging to different texture components. Substructural characterization is based on the X-ray method of Generalized Direct Pole Figures, which implies that a full profile of X-ray reflections is registered for different positions of the specimen, i.e. as a direct pole figure is being built. As a result, one can obtain the FWHMs of X-ray lines and elastic microstrains distributed on the stereographic projection. It means that a textured polycrystalline material that has undergone thermo-mechanical treatme nt is characterized with a certain spectrum of structural states and the presence of residual elastic microstrains. Therefore, the degree of macroscopic anisotropy of the product properties is defined both by the predominant grain orientation in the polycrystal and by the parameters of substructural inhomogeneity of grains belonging to different texture components. In spite of the fact that the elastic properties of an individual crystallite do not change and the tensile and compressive elastic microdeformations are balanced in the studied volume of the material, the elasticity of the whole system, i.e. of a polycrystal, changes due to interacting grains and the elastic energy stored in them. The authors propose a method for calculating elastic moduli and thermal expansion coefficients while accounting for the substructural inhomogeneity of the material by minimizing the elastic energy of the textured material. The efficiency of this method is demonstrated on specimens of a semi-finished channel pipe made of Zr – 2.5% Nb alloy.
This research was funded by the Ministry of Science and Higher Education of the Russian Federation; Agreement No. 075-15-2021-1352.

Ключевые слова Crystallographic texture, substructure, inhomogeneity, anisotropy, zirconium alloys, elastic moduli, linear thermal expansion coefficients, indentation
Библиографический список

1. Bunge H .-J., Park N.-J., Klein H. Physical properties of Textured Materials. Gottingen : Cuviller Verlag, 1993. 150 p.
2. Kocks U. F., Tome C. N., Wenk H. R. Texture and anisotropy. United Kingdom : University Press, Cambridge, 1998. 675 p.
3. Krasavin V. V., Krasavin A. V. Understanding the elastic properties of single crystals of hexagonal metals. Zavodskaya laboratoriya. Diagnostika materialov. 2019. Vol. 85, No. 9. pp. 29–35.
4. Isaenkova M. G., Perlovich Yu. A. Regularities in the evolution of crystallographic texture and substructural heterogeneity in zirconium alloys during deformation and heat treatment. Moscow : NIYaU MIFI, 2014. 528 p.
5. Isaenkova M. G., Perlovich Yu. A., Soe San Thu, Krymskaya O. A., Fesenko V. A. Development of crystallographic texture in the time of rolling or Zr monocrystals and their recrystallization. Tsvetnye Metally. 2014. No. 12. pp. 73–77.
6. Fisher E. S., Renken C. J. Single-crystal elastic moduli and the hcp→bcc transformation in Ti, Zr, and Hf. Physical Review. 1964. Vol. 135, No. 2A. pp. A482–A494.
7. Douglass D. The metallurgy of zirconium. Translated from English. Moscow : Atomizdat, 1975. 360 p.
8. Bunnell L. R., Bates J. L., Mellinger G. B. Some high-temperature properties of zircaloy-oxygen alloys. Journal of Nuclear Materials. 1983. Vol. 116. pp. 219–232.
9. Prasolov P. F., Shestak V. E., Platonov P. A., Chugnov O. K. et al. Anisotropy of the elastic modulus and thermal-expansion coefficient of textured zirconium alloys N-1 and N-2.5. Soviet Atomic Energy. 1990. Vol. 68, No. 2. pp. 113–118.
10. Wang B.-T., Zhang P., Liu H.-Y., Li W.-D., Zhang P. First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium. Journal of Applied Physics. 2011. Vol. 109. p. 063514-1-7.
11. Smirnova D. E., Starikov S. V. An interatomic potential for simulation of Zr – Nb system. Computational Materials Science. 20 17. Vol. 129. pp. 259–272.
12. Fong R. W. L., Fazeli F., Smith T. Thermal expansion anisotropy of Zr – 2.5 Nb pressure tube material on heating to 1100 оC. 35th Annual Conference of the Canadian Nuclear Society. Eds. G. Thomas, J. Plourde, B. Rouben, K. Duguay. Canada : Curran Associates, Inc., 2015. pp. 1–12.
13. Fong R. W. L., Vogel S., Miller R., Saari H. Crystallographic texture and volume fraction of α and β-phases in Zr – 2.5 Nb pressure tube material during heating and cooling. Metallurgical and Materials Transactions A. 2012. Vol. 43, No. 3. pp. 806–821.
14. Isaenkova M. G., Tenishev A. V., Krymskaya O. A., Stolbov S. D. et al. Influence of the structural state and crystallographic texture of Zr – 2.5 % Nb alloy samples on the anisotropy of their thermal expansion. Nuclear Materials and Energy. 2021. Vol. 29. 101071. DOI: 10.1016/j.nme.2021.101071.
15. He W., Chapuis A., Chen X., Liu Q. Effect of loading direction on the deformation and annealing behavior of a zirconium alloy. Materials Science and Engineering A. 2018. Vol. 734. pp. 364–373.
16. Liu C., Lia G., Chu L., Gu H. et al. Texture and yielding anisotropy of zircaloy-4 alloy cladding tube produced by cold pilger rolling and annealing. Materials Science and Engineering A. 2018. Vol. 719. pp. 147–154.
17. Zeng Q.-H., Chapu I. A., Luan B.-F., Liu Q. Slip deformation mechanism of α-Zr at 700 оC. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. pp. 1465–1475.
18. Han F., Li G., Liu C., Yuan F. et al. Anisotropic yielding behavior and associated mechanism of cold rolled and annealed Zircaloy-4 alloy thin sheets under tensile condition. Materials Chemistry and Physics. 2020. Vol. 242. p. 122539.
19. Ahn D.-H., Lee G.-G., Moon J., Kim H. et al. Analysis of texture and grain shape effects on the yield anisotropy of Zr – 2.5wt% Nb pressure tube alloy using crystal plasticity finite element method. Journal of Nuclear Materials. 2021. Vol. 555. p. 153112. DOI: 10.1016/j.jnucmat.2021.153112.
20. Samal M. K., Syed A., Sen D., Chattopadhyay J. Experimental evaluation of orientation and temperature dependent material stress-strain curves of Zr 2.5% Nb Indian pressure tube material and development of a suitable anisotropic material model. Journal of Nuclear Materials. 2020. Vol. 530. 151970.
21. Geelhood K. J., Luscher W. G., Porter I. E. Material property correlations: comparisons between FRAPCON-4.0, FRAPTRAN-2.0 and MATPRO. Pacific Northwest National Laboratory, Richland, Washington, September 2015. 154 p. DOI: 10.2172/1030897.
22. Novikova S. I. Thermal expansion of solids. Moscow : Nauka, 1974. 293 p.
23. ISO 14577-1:2015 EN. Metallic materials — instrumented indentation test for hardness and materials parameters. Part 1-3. 2015.
24. Zhuk D., Isaenkova M., Perlovich Y., Krymskaya O. Finite element simulation of microindentation. Russian Metallurgy (Metally). 2017. Vol. 5. pp. 390–396.
25. Perlovich Y., Isaenkova M., Krymskaya O., Fesenko V. et al. Optimization of the procedure for determining integral texture parameters of products from zirconium-based alloys using the orientation distribution function. IOP Conference Series : Materials Science and Engineering. 2016. Vol. 130. 012056.

Language of full-text русский
Полный текст статьи Получить
Назад