Журналы →  Tsvetnye Metally →  2022 →  №12 →  Назад

MATERIALS SCIENCE
Название Behaviour of helium and hydrogen in vanadium alloys – innovative fusion reactor first wall materials: a review. Part 1. V – Ti and V – Fe alloys
DOI 10.17580/tsm.2022.12.09
Автор Chernov I. I., Staltsov M. S.
Информация об авторе

National Research Nuclear University MEPhI, Moscow, Russia:

I. I. Chernov, Professor at the Department of Nuelear Physics and Technology of the Office of Educational Programs, Doctor of Physics & Mathematics Sciences, e-mail: ichernov@mail.ru
M. S. Staltsov, Associate Professor at the Department of Physical Problems of Materials Science, Candidate of Physics & Mathematics Sciences

Реферат

This paper is the first part of a three-part review that looks at the effect of doping elements on the behaviour of helium, the development of gas porosity, as well as at the amount of retained hydrogen introduced into vanadium alloys with Ti, Cr, W and Ta (using different techniques) with a rapid decay of induced radioactivity. The same regularities have been identified regarding how the chemical composition of the alloys impacts the hydrogen entrapment and retention regardless of the way it is introduced: either through pressure saturation without defect formation or through ion implantation with radiation-induced defects entailed. It was established that when vanadium is doped with a chemically active element (V – Ti alloys), the concentration of the latter has a nonmonotonic effect on the helium porosity and the mass fraction of retained hydrogen. It can be attributed to the way titanium interacts with oxygen and nitrogen in vanadium, which dictates how much titanium hydride will form. The paper demonstrates that pre-irradiation of the alloy with helium ions results in a higher amount of retained hydrogen when it is introduced further, regardless of the temperature.

Ключевые слова Vanadium, low-activation vanadium alloys, helium, hydrogen, helium porosity, hydrogen trapping, release of helium and hydrogen
Библиографический список

1. Smith D. L., Loomis B. A., Diercks D. R. Vanadium-base alloys for fusion reactor applications — a review. Journal of Nuclear Materials. 1985. Vol. 135. pp. 125–139.
2. Butterworth G. J., Forty C. B. A. The significance of sequential charged particle reactions in the activation of vanadium alloys. Journal of Nuclear Materials. 1994. Vol. 212–215. P. 1. pp. 628–634.
3. Vatulin A. V. Low-activation structural materials for nuclear engineering (nuclear fuel elements). Voprosy atomnoy nauki i tekhniki. Series: Material Science and New Materials. 2004. Iss. 1. pp. 26–41.
4. Ioltukhovskiy A. G., Velyukhanov V. P., Zelenskiy G. K. et al. Chromium lowdoped corrosion-resistant and radiation-resistant steel. Patent RF, No. 2325459. Published: 27.05.2008.
5. Kompaniets T. N. The problem of selecting steels for a DEMO reactor. Voprosy atomnoy nauki i tekhniki. Series: Nuclear fusion. 2009. Iss. 3. pp. 16–24.
6. Kalin B. A., Staltsov M. S., Chernov I. I. Low-activation vanadium alloys for nuclear and fusion power engineering: Doping principles, radiation resistance, the problem of helium and hydrogen. Nuclear Physics and Engineering. 2011. Vol. 2, No. 4. pp. 320–344.
7. Nikulin S. A., Votinov S. N., Rozhnov A. B. Vanadium alloys for nuclear power engineering. Moscow : Izdatelskiy dom MISIS, 2014. 206 p.
8. Kalin B. A., Staltsov M. S., Tishchenko A. G., Chernov I. I. Vanadium alloys on the threshold of wide application in energetics. Tsvetnye Metally. 2016. No. 11. pp. 77–86.
9. Boyko N. V., Evstyukhina I. A., Leontieva-Smirnova M. V. et al. Evolution of the structure and phase state of hardened reduced-activation ferritic/martensitic steel depending on the soaking temperature. Fizika metallov i metallovedenie. 2020. Vol. 121, No. 1. pp. 48–52.
10. Kalin B. A., Platonov P. A., Tuzov Yu. V. et al. Material physics. Vol. 6. Structural materials for nuclear engineering: Textbook for university students. Moscow : NIYaU MIFI, 2021. 736 p.
11. Alekseev O. A., Votinov S. N., Gubkin I. N. et al. Vanadium alloy plated with ferritic stainless steel as a fuel cladding material for fast neutron reactors. Perspektivnye materialy. 2009. No. 4. pp. 34–42.
12. Blokhin D. A., Chernov V. M. Nuclear generation of hydrogen and helium in the structural materials of fission and fusion reactors. Voprosy atomnoy nauki i tekhniki. Series: Material Science and New Materials. 2008. Iss. 2. pp. 112–122.
13. Sekimura N., Iwai Y., Arai Y. et al. Synergistic effects of hydrogen and helium on microstructural evolution in vanadium alloys by triple ion beam irradiation. Journal of Nuclear Materials. 2000. Vol. 283–287. pp. 224–228.
14. Natesan K., Soppet W. K. Performance of V–Cr–Ti alloys in a hydrogen environment. Journal of Nuclear Materials. 2000. Vol. 283–287. pp. 1316–1321.
15. Yukawa H., Takagi M., Teshima A., Moringa M. Alloying effects on the stability of vanadium hydrides. Journal of Alloys and Compounds. 2002. Vol. 330–332. pp. 105–109.
16. Fukumoto K., Kimura A., Matsui H. Swelling behavior of V–Fe binary and V–Fe–Ti ternary alloys. Journal of Nuclear Materials. 1998. Vol. 258–263. pp. 1431–1436.
17. Kalin B. A., Chernov I. I., Kalashnikov A. N. et al. Effect of doping on helium behavior and bubble structure development in nickel and vanadium alloys. Atomic Energy. 2002. Vol. 92, No. 1. pp. 50–56.
18. Kalashnikov A. N., Chernov I. I., Kalin B. A., Binyukova S. Yu. Microstructure development and helium behavior in nickel and vanadium base model alloys. Journal of Nuclear Materials. 2002. Vol. 307–311. P. 1. pp. 362–366.

19. Tishchenko L. P., Shabunya A. V., Peregon T. I. Understanding the entrapment and thermal gas release of helium and hydrogen isotopes from structural materials. Bulletin of the Russian Academy of Sciences: Physics. 1994. Vol. 85, No. 3. pp. 158–161.
20. Kalin B. A., Chernov I. I., Kalashnikov A. N., Esaulov M. N. Interaction of implanted helium with interstitial and substitutional elements in nickel and iron. Voprosy atomnoy nauki i tekhniki. Series: Physics of Radiation Effects and Radiation Materials Science. 1997. Iss. 1. pp. 53–80.
21. Guseva M. I., Zakharov A. P., Kalin B. A. et al. Distribution of helium in high-nickel alloy: An electron microscopy study. Atomnaya energiya. 1982. Vol. 52, Iss. 6. pp. 401–404.
22. Kalin B. A., Chernov I. I. Well-ordered structures of pores and bubbles in irradiated metals and alloys. Atomnaya tekhnika za rubezhom. 1986. No. 10. pp. 3–9.
23. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Behaviour of helium in vanadium-titanium alloys exposed to Не+ ions at room temperature: A thermal desorption study. Fizika i khimiya obrabotki materialov. 2012. No. 3. pp. 22–29.
24. Staltsov М. S., Chernov I. I., Kalin B. A. et al. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition. Journal of Nuclear Materials. 2015. Vol. 461. pp. 56–60.
25. Chernov I. I., Kalin B. A., Kalashnikov A. N., Ananin V. M. Behavior of ion implanted helium and structural changes in nickel-base alloys under longtime exposure at elevated temperatures. Journal of Nuclear Materials. 1999. Vol. 271/272. pp. 333–339.
26. Reed D. J. A review of recent theoretical developments in the understanding of migration of helium in metals and its interaction with lattice defects. Radiation Effects. 1977. Vol. 31, No. 3. pp. 129–147.
27. Zelenskij V. F., Nekludov I. M., Ruzhitskij V. V. et al. Thermal desorption of helium from policristalline Ni irradiated to fluences ranging from 1×1017 to 1×1018 He+/cm2. Journal of Nuclear Materials. 1987. Vol. 151. pp. 22–26.
28. Staltsov М. S., Chernov I. I., Kalin B. A. Helium in the structural materials of nuclear and fusion reactors: Learner’s guide. Moscow : NIYaU MIFI, 2021. 86 p.
29. Skorov D. M., Dashkovskiy A. I., Maskalets V. N., Khizhnyi V. K. Surface energy of solid metallic phases. Moscow : Atomizdat, 1973. 172 p.
30. Kyi Zin Oo, Chernov I. I., Staltsov М. S. et al. Thermal desorption of helium from reactor steel. Atomnaya energiya. 2011. Vol. 110, Iss. 3. pp. 130–137.
31. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Mechanisms of helium porosity formation in vanadium alloys as a function of the chemical composition. Atomic Energy. 2011. Vol. 109, Iss. 3. pp. 176–183.
32. Ananyin V. M., Kalin B. A., Korchagin O. N. et al. An internal friction study to understand how oxygen interacts with titanium in vanadium. Fizika i khimiya obrabotki materialov. 2010. No. 2. pp. 66–70.
33. Kolk G., Veen A., Caspers L. The interaction of He with C in α-Fe. Delft. Reports on Progress. Series: Physics and Physical Engineering. 1979. Vol. 4, No. 1. pp. 19–28.
34. Binyukova S. Yu., Kalin B. A., Kalashnikov A. N., Chernov I. I. Behaviour of helium and development of gas porosity in Fe – С alloys under ion irradiation. Perspektivnye materialy. 2002. No. 4. pp. 50–57.
35. Staltsov M. S., Chernov I. I., Aung Kyaw Zaw et al. Gas porosity formation in the vanadium alloys V – W, V – Ta, V – Zr during helium-ion irradiation at 650 oC. Atomic Energy. 2014. Vol. 116, No. 1. pp. 35–41.
36. Petrov V. S., Bondarenko G. G., Vasilievskiy V. V., Loginov B. A. Use of thermogravimetry and scanning probe microscopy to understand the interaction of titanium and niobium with hydrogen. Perspektivnye materialy. 2005. No. 6. pp. 26–29.
37. Kalin B. A., Kalashnikov A. N., Chernov I. I., Shmakov A. A. Hydrogen problems in reactor materials. Interaction of Hydrogen Isotopes with Structural Materials: Proceedings of the 7th International School of Young Researchers and Experts IHISM’11 JUNIOR, Zvenigorod, 24–28 October 2011. Sarov, 2012. pp. 10–54.
38. Aung Kyaw Zaw, Chernov I. I., Staltsov M. S., Kalin B. A., Korchagin O. N. Research of helium and hydrogen behavior in vanadium-based alloys. Tsvetnye Metally. 2014. No. 12. pp. 12–16.
39. Aung Kyaw Zaw, Chernov I. I., Staltsov M. S. et al. Hydrogen retention by vanadium–titanium alloys. Inorganic Materials: Applied Research. 2015. Vol. 6, No. 2. pp. 138–142.
40. Staltsov M. S., Chernov I. I., Kalin B. A. et al. Abnormalities of physics and mechanical properties, behavior of helium and hydrogen in the V – Ti alloys (Overview). IOP Conference Series: Materials Science and Engineering. 2016. DOI: 10.1088/1757-899X/130/1/012013.
41. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Some problems related to the presence of hydrogen in reactor materials. Interaction of Hydrogen Isotopes with Structural Materials: Proceedings of the 11th Kurdyumov International School of Young Researchers and Experts IHISM’16 Junior; Petrozavodsk, 27 June – 3 July 2016. Sarov : Izdatelstvo FGUP “RFYaTs-VNIIEF”, 2017. pp. 156–174.
42. Chernov I. I., Staltsov М. S., Kalin B. I. et al. Effect of the chemical composition and the structural and phases states of materials on hydrogen retention. Russian Metallurgy (Metally). 2017. Vol. 2017, No. 7. pp. 569–575.
43. Muzgin V. N., Khamzina L. B., Zolotavin V. L. The analytical chemistry of vanadium. Moscow : Nauka, 1981. 216 p.
44. Barabash O. M., Koval Yu. N. Structure and properties of metals and alloys. Crystal structure of metals and alloys: Reference book. Kiev : Naukova dumka, 1986. 598 p.
45. Gui Li-Jiang, Liu Yue-Lin, Wang Wei-Tian et al. First-principles investigation on vacancy trapping behaviors of hydrogen in vanadium. Journal of Nuclear Materials. 2013. Vol. 442. pp. S688–S693.
46. Barin I. Thermochemical data of pure substances. Part I. Weincheim : VCH Verlags Gesellshaft, 1993. 1885 p.
47. Golubkov A. N., Yukhimchuk A. A. Equilibrium pressure of protium and deuterium over vanadium dihydrate phase. Proceedings of NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Materials, 2–8 Seрtember, 1999, Katsiveli, Yaltoa. pp. 255–264.
48. Ruzinov L. P., Gulyanitskiy B. S. Equilibrium transformations of metallurgical reactions: Reference book. Moscow : Metallurgiya, 1975. 416 p.
49. Votinov S. N., Kolotushkin V. P., Parfenov A. A. Radiation-resistant vanadium-base alloys. Nuclear Science and Industry. Available at: http://geum.ru/next/art-315715.leaf-3.php.
50. Efimov Yu. V., Baron V. V., Savitskiy E. M. Vanadium and its alloys. Moscow : Nauka, 1969. 248 p.

Language of full-text русский
Полный текст статьи Получить
Назад