Journals →  Gornyi Zhurnal →  2023 →  #1 →  Back

ArticleName Determination of physical and mechanical properties of rocks using anti-burst destress measures
DOI 10.17580/gzh.2023.01.04
ArticleAuthor Gospodarikov A. P., Kirkin A. P., Trofimov A. V., Kovalevsky V. N.

Saint-Petersburg Mining University, Saint-Petersburg, Russia:

A. P. Gospodarikov, Head of Higher Mathematics Department, Professor, Doctor of Engineering Sciences
A. P. Kirkin, Post-Graduate Student,
V. N. Kovalevsky, Associate Professor, Candidate of Engineering Sciences

Gipronickel Institute LLC, Saint-Petersburg, Russia:

A. V. Trofimov, Head of Geotechnical Engineering Laboratory, Candidate of Engineering Sciences


Rock bursts are traditionally one of the main problems in the mining industry. In recent years, with an increase in the depth of mineral mining, this problem has become more relevant. To prevent dynamic events induced by rock pressure, various combat methods have been developed at the present time. Among them, the most common approach to prevent rock bursts is destressing by creating local zones of yielding in rocks. This is possible with drilling a series of destress wells or by inducing fractures with blasting. However, for a more accurate assessment of the effectiveness of these measures, it is also necessary to research the change in the properties of rocks during their fracture. In this study, the special model mechanical tests were carried out to determine the strength and strain characteristics of solid sulfide ore samples in the complex loading conditions. Operation of the destress wells was simulated by making holes in the samples. To model destress blasting, softening of the model samples with holes, pressed into steel shells, was performed by exposing them to an explosive pulse from a detonating cord. Lateral compression of the samples by the steel shells created the three-step stress of 15, 30 and 45 MPa in them. In the subsequent uniaxial compression tests on the servo-hydraulic press with the transverse straining control, strength limits, strain characteristics and rock bursting susceptibility of the samples were determined.

keywords Physical and mechanical properties, laboratory tests, post-limiting deformation, servohydraulic test presses, explosive loading, rockburst hazard, rock bursts, modulus of deformation

1. Petukhov I. M., Batugina I. M., Sidorov V. S., Shabarov A. N., Lodus E. V. et al. Prediction and Prevention of Rock Busts in Mines. Moscow : Izdatelstvo Akademii gornykh nauk, 1997. 377 p.
2. Tyupin V. N. Estimation of critical depth of deposits by rock bump hazard condition. Journal of Mining Institute. 2019. Vol. 236. pp. 167–171.
3. Sidorov D. V., Potapchuk M. I., Sidlyar A. V., Kursakin G. A. Assessment of Rock-Burst Hazard in Deep Layer Mining at Nikolayevskoye Field. Journal of Mining Institute. 2019. Vol. 238. pp. 392–398.
4. Makarov A. B. Practical geomechanics : Guidance for mining engineers. Moscow : Gornaya kniga, 2006. 380 p.
5. Trushko V. L., Sozonov K. V. Assessment of the stress–strain state of polygonal configuration stopes during development of unstable iron ores. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2019. No. 2. pp. 331–340.
6. Simser B. P. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 5. pp. 1036–1043.
7. Lovchikov A. V., Zemtsovskiy A. V. Rockburst prevention in deep ore pillars by forming relieve slots (for the Lovozero rare metal deposit). Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. No. 1. pp. 158–166.
8. Saharan M. R., Mitri H. S. Destress Blasting as a Mines Safety Tool: Some Fundamental Challenges for Successful Applications. Procedía Engineering. 2011. Vol. 26. pp. 37–47.
9. Eren Komurlu, Ayhal Kesimal. Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades. Geomechanics and Engineering. 2015. Vol. 9, No. 2. pp. 195–205.
10. Sergunin M. P., Alborov A. E., Andreev A. A., Buslova M. A. Stress assessment ahead of stoping front with widening stress relief zone – A case study of the Oktyabrsky and Talnakh deposits. Gornyi Zhurnal. 2020. No. 6. pp. 38–41. DOI: 10.17580/gzh.2020.06.06
11. Karpov G. N., Kovalskiy E. R., Smychnik A. D. Determination of rock destressing parameters at the ends of disassembling room. GIAB. 2019. No. 8. pp. 95–107.
12. Vennes I., Mitri H., Chinnasane D. R., Yao M. Large-scale destress blasting for seismicity control in hard rock mines: A case study. International Journal of Mining Science and Technology. 2020. Vol. 30, Iss. 2. pp. 141–149.
13. Atsushi Sainoki, Muhammad Zaka Emad, Hani S. Mitri. Study on the efficiency of destress blasting in deep mine drift development. Canadian Geotechnical Journal. 2017. Vol. 54, No. 4. pp. 518–528.
14. Kutuzov B. N., Tyupin V. N. Unloading of rockburst-hazardous interchamber pillars at active faults by blast energy. Gornyi Zhurnal. 2018. No. 1. pp. 54–57. DOI: 10.17580/gzh.2018.01.09
15. Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 3. pp. 445–463.
16. Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics. 1974. Vol. 6, Iss. 4. pp. 189–236.
17. Hoek E., Diederichs M. S. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences. 2006. Vol. 43, Iss. 2. pp. 203–215.
18. Nikolenko P. V., Shkuratnik V. L., Chepur M. D. Sensitization of ultrasonic stress control in rock mass by heating. GIAB. 2021. No. 11. pp. 159–168.
19. Rajaoalison H., Zlotkovskiy, A., Rambolamanana G. Mechanical properties of sandstone using non-destructive method. Journal of Mining Institute. 2020. Vol. 241. pp. 113–117.
20. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. GIAB. 2020. No. 5. pp. 128–139.
21. Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37, No. 2. pp. 109–122.
22. Aushev E. V., Cherepovskiy A. A., Lysenko M. V., Zayatdinov D. F., Pozolotin A. S. Geomechanical evaluation of the mining situation in the formation of the dismantling chamber and the production of dismantling. Ugol. 2019. No. 11(1124). pp. 20–26.
23. Peiqi Xi, Yuming Huo, Defu Zhu, Cunen Xing, Zhonglun Wang. Development and application of triangulation joint network based on an FEM program (RS2). Journal of Geophysics and Engineering. 2022. Vol. 19, Iss. 2. pp. 245–254.
24. Dang V. K., Do N. A., Dinh V. D. Estimating the radial displacement on the tunnel boundary by rock mass classification systems. International Journal of GEOMATE. 2022. Vol. 22, Iss. 92. pp. 9–15.
25. Zareifard M. R. A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek–Brown strain-softening rock mass considering the blast-induced damaged zone. Сomputers and Geotechnics. 2020. Vol. 122. 103476. DOI: 10.1016/j.compgeo.2020.103476
26. Jinwang Li, Caihua Shen, Xiufeng He, Xiangtian Zheng, JiaojiaoYuan. Numerical solution for circular tunnel excavated in strain-softening rock masses considering damaged zone. Scientific Reports. 2022. Vol. 12. 4465. DOI: 10.1038/s41598-022-08531-3
27. Bertuzzi R. Revisiting rock classification to estimate rock mass properties. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 3. pp. 494–510.
28. Pleshko M. S., Davydov A. A., Silchenko Yu. A., Kaledin O. S. Effective lining solutions for superdeep shaft SKS-1 in Skalisty mine in difficult geomechanical conditions. Gornyi Zhurnal. 2020. No. 6. pp. 57–62. DOI: 10.17580/gzh.2020.06.08
29. Balandin V. V., Leonov V. L., Kuranov A. D., Bagautdinov I. I. Application of generalized Hoek–Brown criterion to selection and design of mine support systems for the Oktyabrsky copper–nickel deposit: Case study. Gornyi Zhurnal. 2019. No. 11. pp. 14–18. DOI: 10.17580/gzh.2019.11.01
30. Marysyuk V. P., Sabyanin G. V., Andreev A. A., Vasiliev D. A. Stress assessment in deep-level stoping in Talnakh mines. Gornyi Zhurnal. 2020. No. 6. pp. 17–22. DOI: 10.17580/gzh.2020.06.02
31. Available at: (accessed: 15.06.2022).
32. Stavrogin A. N., Tarasov B. G. Experimental physics and mechanics of rocks. Saint-Petersburg : Nauka, 2001. 342 p.
33. Biryuchev I. V., Makarov A. B., Usov A. A. Geomechanical model of underground mine. Part II. Application. Gornyi Zhurnal. 2020. No. 2. pp. 35–44. DOI: 10.17580/gzh.2020.02.04
34. Timoshenko S., Goodier J. N. Theory of elasticity. 2nd ed. New York : McGraw-Hill Book Company, Inc, 1951. 532 p.
35. Sabyanin G. V., Shilenko S. Yu., Trofimov A. V., Kirkin A. P. Destress blasting in deep mines of NorNickel’s Polar Division. Gornyi Zhurnal. 2021. No. 2. pp. 32–36. DOI: 10.17580/gzh.2021.02.04
36. Azarkovich A. E., Shuyfer M. I., Tikhomirov A. P. Blasting nearby guarded objects. Moscow : Nedra, 1984. 213 p.
37. Regulatory documents in the area of acti vity of the Federal Environmental, Industrial and Nuclear Supervision Service. Instruction on rockburst hazard assessment in metalliferous and nonmetallic deposits. Iss. 8. Series. 06. Safety, supervision and permission activity in mining industry. Moscow : ZAO NTTs PB, 2016. 52 p.
38. Fairhurst C. E., Hudson J. A. Draft ISRM suggested method for the complete stress±strain curve for intact rock in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences. 1999. Vol. 36, Iss. 3. pp. 279–289.
39. Stavrogin A. N., Protosenya A. G. Mechanics of rock deformation and fracture. Moscow : Nedra, 1992. 224 p.

Language of full-text russian
Full content Buy