Journals →  Gornyi Zhurnal →  2023 →  #1 →  Back

ArticleName Ore extraction efficiency in sublevel caving with front-face ore drawing at great depths
DOI 10.17580/gzh.2023.01.07
ArticleAuthor Vasichev S. Yu., Konurin A. I., Neverov S. A., Neverov A. A.

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia:

S. Yu. Vasichev, Junior Researcher
A. I. Konurin, Senior Researcher, Candidate of Engineering Sciences
S. A. Neverov, Head of Laboratory, Doctor of Engineering Sciences
A. A. Neverov, Leading Researcher, Doctor of Engineering Sciences,


The development of ore deposits at the present stage of underground mining is characterized by the continuous withdrawal of rich ore sites deposits, the lack of their recovery and the involvement of poorer ores in mining, high capital intensity and minimal reproduction of the mineral resource base at existing enterprises. The constantly growing depth of mining operations is accompanied by the deterioration in the geological and geomechanical conditions. To increase recovery rates, some technologies require additional material and labor resources, which calls into question the feasibility of their application. The current situation in the mining industry is due to the mediocrity of the mining systems in use and their inability to ensure mineral extraction at a competitive level. One of the promising trends in extraction of medium-grade and quality ores is the development and wider application of sublevel caving with the front-face ore drawing as the technology with the maximum simplification of preparation and extraction layouts, high intensity of mining, minimum amount of working assets and the adapted automation of production processes. The analysis of the technical literature and practical know-how of well-known large mining companies shows the undeniable and obvious advantages of this development system over the other equivalent mining methods. A scientifically based selection of rational parameters for the system of sublevel caving with front-face ore drawing, especially at great depths, can ensure both safety and also high rates of extraction. In this regard, this publication focuses on the influence of structural elements and parameters of ore drawing on ore loss and dilution in the technology of sublevel caving at great depths.

keywords front-face ore drawing, flowability, modeling, losses, dilution, sublevel height, draw point spacing, mining depth

1. Eremenko V. A., Galchenko Yu. P., Yanbekov A. M. Justification of new opportunities for the use of the gravitational energy of the earth in underground ore mining with convergent geotechnologies. Eurasian Mining. 2022. No. 1. pp. 3–7. DOI: 10.17580/em.2022.01.01
2. Tianlong Wang, Congxin Chen, Kaizong Xia, Chuqiang Zhang, Yue Wang et al. Ground Surface Deformation in the Hanging Wall of the Jinshandian Underground Iron Mine in China. Frontiers in Earth Science. 2022. Vol. 10. 909466. DOI: 10.3389/feart.2022.909466
3. Konurin A. I., Shchukin S. A., Neverov S. A., Neverov A. A. Sublevel caving under protection of ore-and-barren rock cushion during transition from open pit to underground mining. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 262. 012033. DOI: 10.1088/1755-1315/262/1/012033
4. Khaboushan A. S., Osanloo M. Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving. Resources Policy. 2020. Vol. 68. 101700. DOI: 10.1016/j.resourpol.2020.101700
5. Freydin A. M., Neverov A. A., Neverov S. A. Underground ore mining : Tutorial. Novosibirsk : IGD SO RAN, 2010. 372 p.
6. Kaizong Xia, Congxin Chen, T ianlong Wang, Kuoyu Yang, C huqiang Zhang. Investigation of Mining-Induced Fault Reactivation Associated with Sublevel Caving in Metal Mines. Rock Mechanics and Rock Engineering. 2022. Vol. 55. pp. 5953–5982.
7. Rusin E. P., Stazhevskiy S. B. Swedish version of sublevel caving ore mining system: stateof-the-art and prospects. Interexpo GEO-Sibir. 2017. Vol. 2, No. 2. pp. 112–116.
8. Jingzhi Tu, Yanlin Zhang, Gang Mei, Nengxiong Xu. Numerical Investigation of Progressive Slope Failure Induced by Sublevel Caving Mining Using the Finite Difference Method and Adaptive Local Remeshing. Applied Sciences. 2021. Vol. 11, Iss. 9. 3812. DOI: 10.3390/app11093812
9. Bibo Dai, Xingdong Zhao, Zhonghua Zhu, Ganqiang Tao, Gui Yin. Feasibility of Broken Ore Flow Simulation in Block Caving Mining Method Using Attribute Stochastic Medium Theory. Minerals. 2022. Vol. 12, Iss. 5. 576. DOI: 10.3390/min12050576
10. Manzoor S., Gustafson A., Johansson D., Schunnesson H. Rock fragmentation variations with increasing extraction ratio in sublevel caving: a case study. International Journal of Mining, Reclamation and Environment. 2022. Vol. 36, Iss. 3. pp. 159–173.
11. Shi X. M., Liu B. G., Xiang Y. Y., Qi Y. A Method for Selecting Similar Materials for Rocks in Scaled Physical Modeling Tests. Journal of Mining Science. 2018. Vol. 54, Iss. 6. pp. 938–948.
12. Laptev V. V. Numerical modelling of fragmented mined rock flow during ore drawing using the ROCKY DEM programme. Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 22, No. 1. pp. 149–157.
13. Ermakova I. A. Width of ore flow in process of ore drawing from working face for systems with caving ores and containing breeds. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. No. 3(127). pp. 44–49.
14. Zhurkina D. S., Klishin S. V., Lavrikov S. V., Leonov M. G. DEM-Based Modeling of Shear Localization and Transition of Geomedium to Unstable Deformation. Journal of Mining Science. 2022. Vol. 58, Iss. 3. pp. 357–365.
15. Kunpeng Yu, Chunshan Zheng, Fengyu Ren. Numeric al Experimental Study on Ore Dilution in Sublevel Caving Mining. Mining, Metallurgy & Exploration. 2021. Vol. 38, Iss. 1. pp. 457–469.
16. Liancheng Wang, Anlin Shao, Xiaobo Liu, Lei Yang, Hangxing Ding. New computational framework for mode ling the gravity flow behavior of sublevel caving material. Computers and Geotechnics. 2020. Vol. 125. 103675. DOI: 10.1016/j.compgeo.2020.103675
17. Rongxing He, Jing Zhang, Yang Liu, Delin Song, Fengyu Ren. Determination of the Ultimate Underground Mining Depth considering the Effect of Granular Rock and the Range of Surface Caving. Mathematical Problems in Engineering. 2021. Vol. 2021. ID 5576786. DOI: 10.1155/2021/5576786
18. Freydin A. M., Neverov S. A. Performance of the technology with multi-point ore drawing under caved rocks. GIAB. 2005. Special Issue. Subject Addendum : Russia’s Far East. pp. 222–230.
19. Šmilauer V., Catalano E., Chareyre B., Dofeenko S., Duriez J. et al. Yade Documentation. 2nd ed. 2015. Available at: (accessed: 15.06.2022).
20. Šmilauer V., Chareyre B., Duriez J., Eulitz A., Gladky A. et al. Using and Programming. 2nd ed. 2015. Available at: (accessed: 15.06.2022).
21. Šmilauer V., Chareyre B. DEM Formulation. 2nd ed. 2015. Available at: (accessed: 30.06.2022).
22. Neverov S. A., Konurin A. I., Neverov A. A., Nikolsky A. M., Konurina M. I. Investigation of ore extraction indicators in the area draw depending on the design of drawpoints. Proceedings of the 19th International Multidisciplinary Scientific GeoConference. Sofia, 2019. Vol. 19, Book 1.3. pp. 355–362.

Language of full-text russian
Full content Buy