Journals →  Gornyi Zhurnal →  2023 →  #1 →  Back

ArticleName Adapting geometry of complex geological structures to finite-element stress–strain modeling of impregnated ore bodies in Komsomolsky Mine
DOI 10.17580/gzh.2023.01.16
ArticleAuthor Darbinyan T. P., Mushtekenov T. S., Rumyantsev A. E., Golovchenko Yu. Yu.

NorNickel’s Polar Division, Norilsk, Russia:

T. P. Darbinyan, Director of Mining Practice Department, Candidate of Engineering Sciences
T. S. Mushtekenov, Deputy Director for Mineral Resources


Geotechnical Engineering Laboratory, Gipronickel Institute, Saint-Petersburg, Russia:
A. E. Rumyantsev, Chief Specialist, Candidate of Engineering Sciences,
Yu. Yu. Golovchenko, Junior Researcher


Continuously rising standards of the FEM-based stress–strain modeling of complex geological structures implacably overlaborate a model framework geometry. Different defects may arise as a consequence, such as holes in polygonal meshes, intersections of planes, degenerated polygons, or triangular polygons with one angle greatly exceeding the other two angles. This complicates operation, disables generation of a quality mesh of finite elements and sometimes makes the use of the initial geometry impossible. This article offers algorithms to remove defective sites from the skeletons of geological structures in numerical modeling. Furthermore, the method to optimize topology of initial skeletons is described; this method uses an outside software (Autodesk 3ds Max) and ensures a maximally beneficial ratio of the polygonal mesh topology quality and the initial geometry preservation. This algorithm helps eliminate local crowding points in the finite element mesh and possible stress raisers which take no considerable part in geometrical amplification. This article describes the application results of the algorithms as the case-studies of skeletons of complex geological structures. The comparison of the finite element mesh quality and number of finite elements for the skeletons with and without optimization reveals the improving quality of the finite element meshes with the decreasing number of finite elements in case of the skeletons after topology optimization and removal of defects. The algorithms are especially effective in large-scale modeling when the number and quality of finite elements in each part of a model essentially influence the time and accuracy of computation.

keywords Geometry optimization, geological structure skeleton, geological model, polygonal mesh, 3D model topology, finite element method, numerical modeling

1. Sonnov M. A., Rumyantsev A. E., Trofimov A. V., Vilchinsky V. B. Numerical modelling of stressand-strain behaviour of deposit deformed by mining operations using step-by-step calculation function in the cae fidesys software system. Gornaya promyshlennost. 2020. No. 2. pp. 110–114.
2. Sonnov M. A., Rumyantsev A. E., Trofimov A. V., Vilchinsky V. B. Finite-element modeling-based geotechnological grounding of the development of mineral deposits confined to tectonic faults. Gornaya promyshlennost. 2018. No. 5. pp. 107–110.
3. Rumyantsev A. E., Trofimov A. V., Vilchinsky V. B., Marysiuk V. P. Finite-element analysis as a means of solving geomechanics problems in deep mines. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. London : Taylor & Francis Group, 2018. Vol. 1. pp. 895–902.
4. Batalov D. А., Strekalov A. V., Khusainov A. T. Problems of geological modeling. Neftegazovoe delo. 2014. No. 1. pp. 65–93.
5. Danilov A. A. Tetrahedral and surface triangular mesh generation techniques. Nauchno-tekhnicheskiy vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologiy, mekhaniki i optiki. 2010. No. 1(65). pp. 87–92.
6. Miroshnichenko N. A. Qualitative assessment of triangulation operations in mining and geological entity set models. Geo-Sibir. 2008. No. 5. pp. 273–277.
7. Lukichev S. V. Digital past, present, and future of mining industry. Gornaya promyshlennost. 2021. No. 4. pp. 73–79.
8. Lukichev S. V., Nagovitsyn O. V. Modeling Objects and Processes within a Mining Technology as a Framework for a System Approach to Solve Mining Problems. Journal of Mining Science. 2018. Vol. 54, Iss. 6. pp. 1041–1049.
9. Shelyakina G. G., Popova D. D., Samoylenko N. A. Comparison of methods of developing geometry after topological optimization in a package for optimization and third party packages. Problemy kachestva graficheskoy podgotovki studentov v tekhnicheskom vuze: traditsii i innovatsii. 2019. No. 1. pp. 173–178.
10. Cuiying Zhou, Zichun Du, Jinwu Ouyang, Zhilong Zhang, Zhen Liu. A 3D geological model and cutting algorithm based on a vertically projected triangulated network. Computers & Geosciences. 2020. Vol. 143. 104562. DOI: 10.1016/j.cageo.2020.104562
11. Mingming Lyu, Bingyu Ren, Binping Wu, Dawei Tong, Shicong Ge et al. A parametric 3D geological modeling method considering stratigraphic interface topology optimization and coding expert knowledge. Engineering Geology. 2021. Vol. 293. 106300. DOI: 10.1016/j.enggeo.2021.106300
12. Pastukhov S. A. Optimization methods of highly polygonal 3D models. Voprosy nauki. Applied Mathematics. Information Science and Mechanics Department Bulletin. 2016. Vol. 2, Iss. 2. pp. 60–70.
13. Vershinin A. V., Livin V. A., Morozov E. M. Strength analysis. Fidesys in the hands of an engineer. Moscow : URSS, 2015. 408 p.
14. Geuzaine C., Remacle J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and postprocessing facilities. International Journal for Numerical Methods in Engineering. 2009. Vol. 79, Iss. 11. pp. 1309–1331.
15. Zhiguang Liu, Liuyang Zhou, Leung H., Shum H. P. H. High-quality compatible triangulations and their application in interactive animation. Computers & Graphics. 2018. Vol. 76. pp. 60–72.
16. Tao Bai, Pejman Tahmasebi. Hybrid geological modeling: Combining machine learning and multiple-poi nt statistics. Computers & Geosciences. 2020. Vol. 142. 104519. DOI: 10.1016/j.cageo.2020.104519
17. Marysyuk V. P., Sabyanin G. V., Andreev A. A., Vasiliev D. A. Stress assessment in deep-level stoping in Talnakh mines. Gornyi Zhurnal. 2020. No. 6. pp. 17–22. DOI: 10.17580/gzh.2020.06.02
18. Sergunin M. P., Alborov A. E., Andreev A. A., Buslova M. A. Stress assessment ahead of stoping front with widening stress relief zone – A case study of the Oktyabrsky and Talnakh deposits. Gornyi Zhurnal. 2020. No. 6. pp. 38–41. DOI: 10.17580/gzh.2020.06.06
19. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022. Vol. 256. pp. 539–548.

Language of full-text russian
Full content Buy