Журналы →  Gornyi Zhurnal →  2023 →  №1 →  Назад

APPLIED RESEARCHES
Название Interwell area design procedure to generate safe zones in rockburst-hazardous conditions of Talnakh deposits
DOI 10.17580/gzh.2023.01.18
Автор Marysyuk V. P., Shilenko S. Yu., Andreev A. A., Shabarov A. N.
Информация об авторе

NorNickel’s Polar Division, Norilsk, Russia:

V. P. Marysyuk, Chief Geotechnical Engineer—Director of Center for Geodynamic Safety, Candidate of Engineering Sciences
S. Yu. Shilenko, Deputy Head for Occupational and Production Safety

 

Science Center for Geomechanics and Problems in Mining, Saint-Petersburg Mining University, Saint-Petersburg, Russia:
A. A. Andreev, Leading Engineer, andreev_aa@pers.spmi.ru
A. N. Shabarov, Director, Doctor of Engineering Sciences

Реферат

Stoping at rockburst-hazardous deposits Talnakh and Oktyabrsky should be carried out within protected zones to prevent dynamic events induced by rock pressure. Until the 2000s, the main method of generation of safe zones was construction of protection capping by means of advanced cutting of aguard bed in the  roof of an ore body. Later on, the destressing drilling method was introduced. This approach to relaxation of ore bodies from stresses ensures formation of a self-developing local destress zone possessing high yielding. The latter prevents accumulation of elastic energy in adjacent rock mass. Borehole erosion transforms round cross-sections to ellipsoids, and, consequently, the width of the interwell space decreases. As the spacing of boreholes reduces, the intensity of failure in the interwell area grows. The borehole destressing technology is used in sulfide ore cutting with backfilling. Effectivization of the borehole destressing technology is discussed. The main stages of this method implementation in rockburst-hazardous mines in the Talnakh ore province are described. The absence of an engineering procedure to calculate drillhole spacing in destress drilling is emphasized. The general provisions of such procedure to take into account the key features of the geomechanical borehole–interwell area system are substantiated. The approach to determination of critical stresses for deformation to take place in the interwell area is shown. Destress drilling widely uses Solo Sandvik and Simba Atlas Copco drill rigs for ring drilling of holes with diameters of 64–89 mm.

Ключевые слова Ore deposit, ground control, mining system, rock mass destressing, safe zones, destress boreholes, interwell space, shape factor
Библиографический список

1. Petukhov I. M., Batugina I. M., Sidorov V. S., Shabarov A. N., Lodus E. V. et al. Rock burst prediction and prevention in mines. Moscow : Izdatelstvo AGN, 1997. 377 p.
2. Eremenko A. A., Darbinyan T. P., Aynbin der I. I., Konurin A. I. Geomechanical assessment of rock mass in the Talnakh and Oktyabrsky deposits. Gornyi Zhurnal. 2020. No. 1. pp. 82–86. DOI: 10.17580/gzh.2020.01.16
3. Tapsiev A. P. Geomechanical substantiation of stress–s train control at edges of rock mass in mining flat ore deposits by long w alls—A case-study of Talnakh–Oktyabrsky deposit : Thesis of Dissertation of Candidate of Engineering Sciences. Novosibirsk, 1984. 21 p.
4. Ainbinder I. I., Patskevich P. G., Krasyukova E. V., Averin A. P. Justification of stability strategy for underground mine opening s under higher effective anisotropic stresses. Gornyi Zhurnal. 2022. No. 1. pp. 34–40. DOI: 10.17580/gzh.2022.01.06
5. Sidorov D. V. Geomechanical justification of design parameters of room-and-pillar mining system for designing of deep-lying horizons of SUBR. Journal of Mining Institute. 2012. Vol. 199. pp. 134–140.
6. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253. pp. 41–48.
7. Haoshuai Wu, Yanlong Chen, Haoyan Lv, Qihang Xie, Yuanguang Chen et al. Stability analysis of rib pillars in highwall mining under dynamic and static loads in ope n-pit coal mine. International Journal of Coal Science & Technology. 2022. Vol. 9, Iss. 1. 38. DOI: 10.1007/s40789-022-00504-1
8. Juyu Jiang, Zhuowei Zhang, Dong Wang, Laigui Wang, Xinping Han. Web pillar stability in open-pit highwall mining. International Journal of Coal Science and Technology. 2022. Vol. 9, Iss. 1. 12. DOI: 10.1007/s40789-022-00483-3
9. Kurlenya M. V., Korotkikh V. N., Tapsiev A. P. Stress-strain state of the rock mass at a face with a tectonic fault. Journal of Mining Science. 1991. Vol. 27, Iss. 2. pp. 79–84.
10. Sidorov D. V., Potapchuk M. I., Sidlyar A. V., Kursakin G. A. Assessment of Rock-Burst Hazard in Deep Layer Mining at Nikolayevskoye Field. Journal of Mining Institute. 2019. Vol. 238. pp. 392–398.
11. Sidorov D. V., Potapchuk M. I., Sidlyar A. V. Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallic deposit. Journal of Mining Institute. 2018. Vol. 234. pp. 604–611.
12. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of tunnel face at the intersection of distur bed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
13. Shvankin M. V., Rozenbaum M. A., Minin Yu. Ya., Stetsenko V. P., Bondarev A. V. Provision of geodynamic safety in mining the Barentsburg coal deposit. Journal of Mining Institute. 2012. Vol. 198. pp. 122–125.
14. Frid V., Shabarov A. N. Modern principles of nondestructive stress monitoring in mine workings – overview. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. London : CRC Press, 2018. pp. 513–518.
15. Phuc L. Q., Zubov V. P., Dac P. M. Improvement of the loading capacity of narrow coal pillars and control roadway deformation in the longwall mining system. A case study at Khe Cham coal mine (Vietnam). Inżynieria Mineralna. 2020. Vol. 1, No. 1. pp. 115–122.
16. Galchenko Yu. P., Eremenko V. A., Kosyreva M. A., Vysotin N. G. Features of secondary stress field formation under anthropogenic change in subsoil during underground mineral mining. Eurasian Mining. 2020. No. 1. pp. 9–13. DOI: 10.17580/em.2020.01.02
17. Tulu I. B., Esterhuizen G. S., Gearhart D., Klemetti T. M., Mohamed K. M. et al. Analysis of global and local stress changes in a longwall gateroad. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 1. pp. 127–135.
18. Shibo Yu, Xiaocong Yang, Chun Zhu, Ye Yuan, Zhixiu Wang. Destressing Mechanics Effect of Surroun ding Rock Induc ed by Blasting Preconditi on at Dee p Drift Development. Geotechnical and Geological Engineering. 2021. Vol. 39, Iss. 6. pp. 4113–4125.
19. Shabarov A., Kuranov A., Popov A., Tsirel S. Geodynamic risks of mining in highly stressed rock mass. Problems in Geomechanics of Highly Compressed Rock and Rock Masses : Proceedings of the 1st International Scientific Conference. 2019. E3S Web of Conferences. 2019. Vol. 129. 01011. DOI: 10.1051/e3sconf/201912901011
20. Sengani F., Zvarivadza T. The use of face perpendicular preconditioning technique to destress a dyke located 60 m ahead of mining faces. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. London : CRC Press, 2018. Vol. 1. pp. 417–422.
21. Stability assessment procedure for rib pillars involved in re-extraction operations. Moscow–Zhezkazgan, 2005. 55 p.
22. Rasskazov M., Tereshkin A., Tsoi D., Konstantinov A., Miroshnikov V. et al. Research of the formation of zones of stress concentration and dynamic manifestations based on seismoacoustic monitoring data in the fields of the Kola Peninsula. Problems of Complex Development of Georesources : Proceedings of VIII International Scientific Conference. 2020. E3S Web of Conferences. 2020. Vol. 192. 01009. DOI: 10.1051/e3sconf/202019201009
23. Wang Zhiqiang, Zhong Qiyao, Wang Peng, Shi Lei, Huang Xuanhao. Determination of coal pillar width and surrounding rock control technology for gob-side entry driving. Coal Science and Technology. 2021. Vol. 49, No. 12. pp. 29–37.
24. Kulkova M. S., Zemtsovsky A. V. Optimizing parameters of stopes and pillars for the Zhdanov deposit mining. Eurasian Mining. 2019. No. 1. pp. 13–15. DOI: 10.17580/em.2019.01.03
25. Shaowei Ma, Zhouquan Luo, Jianhua Hu, Qifan Ren, Yaguang Qin. Determination of Intervening Pillar Thickness Based on the Cusp Catastrophe Model. Advances in Civil Engineering. 2019. Vol. 2019. 8253589. DOI: 10.1155/2019/8253589
26. Protosenya A. G., Belyakov N. A., Karasev M. A. Method of predicting earth surface subsidence during the construction of tunnels using TBM with face cantledge on the basis of multivariate modeling. International Journal of Civil Engineering and Technology. 2018. Vol. 9, Iss. 11. pp. 1620–1629.
27. Gospodarikov A. P., Zatsepin M. A. Mathematical modeling of boundary problems in geomechanics. Gornyi Zhurnal. 2019. No. 12. pp. 16–20. DOI: 10.17580/gzh.2019.12.03
28. Karasev M. A., Sotnikov R. O., Sinegubov V. Yu., Egorova N. A., Makarov K. V. et al. Development of a model for predicting the dynamic effect on the stability of rock excavation. Journal of Physics: Conference Series. 2019. Vol. 1384. 012051. DOI: 10.1088/1742-6596/1384/1/012051
29. Trofimov A. V., Kirkin A. P., Rumyantsev A. E., Yavarov A. V. Use of numerical modelling to determine opti mum overcoring parameters in rock stress-strain state analysis. Tsvetnye Metally. 2020. No. 12. pp. 22–27. DOI: 10.17580/tsm.2020.12.03
30. Qinghua Lei, Ke Gao. A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 113. pp. 121–133.
31. Vanneschi C., Mastrorocco G., Salvini R. Assessment of a Rock Pillar Failure by Using Change Detection Analysis and FEM Modelling. International Journal of Geo-Information. 2021. Vol. 10, Iss. 11. 774. DOI: 10.3390/ijgi10110774
32. Kovalski E. R., Gromtsev K. V., Petrov D. N. Modeling deformation of rib pillars during backfill. GIAB. 20 20. No. 9. pp. 87–101.
33. Wei H., Wang Y., Wang B. Key technology for rapidly drilling large diameter destressing-drillhole in rockbu rst coal seam. Meitiandizhi Yu Kantan/Coal Geology and Exploration. 2020. Vol. 48, Iss. 2. pp. 20–24.
34. Wu S., Zhou J., Du C. Study on Prevention and Control Effect of Strong Rock Burst Based on Rapid Stress Release of Blasting Relieving Pressure Technology. Gongcheng Kexue Yu Jishu/Advanced Engineering Science. 2018. Vol. 50, Iss. 4. pp. 22–29.
35. Chenyang Liu, Guanghua Sun, Peng Liang, Yufan Feng, Yue Wang et al. Research on Evolution Characteristics of Unloading Energy in Excavation Face of High-Stress Pillar. Shock and Vibration. 2022. Vol. 2022. ID 4185778. DOI: 10.1155/2022/4185778
36. Vennes I., Mitri H., Chinnasane D. R., Yao M. Effect of Stress Anisotropy on the Efficiency of Large-Scale Destre ss Blasting. Rock Mechanics and Rock Engineering. 2021. Vol. 54, Iss. 1. pp. 31–46.

Language of full-text русский
Полный текст статьи Получить
Назад