Journals →  Tsvetnye Metally →  2023 →  #1 →  Back

ArticleName Flotation of copper smelter slags intensified by impact crushing
DOI 10.17580/tsm.2023.01.01
ArticleAuthor Gorlova O. E., Sinyanskaya O. M., Tusupbekova T. Sh., Kolodezhnaya E. V.

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia1IPKON, Russian Academy of Sciences, Moscow, Russia2:

O. E. Gorlova, Professor of the Department of Geology, Mine Surveying and Minerals Processing1, Leading Researcher2, Doctor of Technical Sciences, Associate Professor, e-mail:


IPKON, Russian Academy of Sciences, Moscow, Russia:

O. M. Sinyanskaya, Minerals Processing Specialist, Candidate of Technical Sciences, phone: +7 (701) 520-40-05


KazGidroMed, Karaganda, Kazakhstan:
T. Sh. Tusupbekova, Lead Engineer at the Minerals Processing Laboratory, phone: +7 (747) 694-33-26


IPKON, Russian Academy of Sciences, Moscow, Russia1 ; Ural Omega JSC, Magnitogorsk, Russia2:
E. V. Kolodezhnaya, Leading Researcher1, Research Engineer2, Candidate of Technical Sciences, phone: +7 (3519) 22-00-49, e-mail:


This paper examines the mineral and chemical composition of converter slags generated by Balkhash Copper Smelter, as well as the forms in which copper ispresent in them. The paper describes the results of flotation of the above product, which was prior subjected to fine crushing in jaw and hammer crushers. The paper features a comparative analysis that looks at the size distribution and the distribution of the key valuable components by grain size of the slag pre-crushed in jaw and hammer crushers. It is shown that the different breaking techniques realized by these crushers influence the size distribution of the crushed product, the share of particles smaller than 0.071 mm and the distribution of copper by fraction. The authors looked at the grinding kinetics of the copper smelter slags pre-crushed in the above specified crushers and compared the share of –0.071 mm particles, as well as that of –0.045 mm particles (which are the finest fraction). It was established that the optimum hammer crushing duration is 45 min. A longer duration leads to overgrinding. At the same time for the jaw crusher, the overgrinding effect and the accumulation of the –0.045 mm particles become expressed if the crushing cycle lasts for 60 min. Flotation of the pre-crushed converter slags resulted in a quality concentrate containing 27.5 to 39.0 wt % copper (depending on the slag crushing duration). In all cases, the recovery of copper was every time higher (by 5% on average) for slags pre-crushed in the hammer crusher. It is pointed out that impact crushing of copper smelter slags significantly intensifies the flotation process. This should be taken into consideration when optimizing the processing schemes.
This research was funded by the Russian Science Foundation; Agreement No. 22-27-00526.

keywords Copper smelting slags, copper, jaw crusher, hammer crusher, impact crushing, breaking technique, grinding, opening of the grains, flotation enrichment, copper concentrate

1. Chanturiya V. A., Shadrunova I. V., Gorlova O. E. Innovative processes of deep and environmentally safe processing of technogenic raw materials in the conditions of new economic challenges. Sustainable Development of the Mountain Territories. 2021. Vol. 13, No. 2. pp. 224–237. DOI: 10.21177/1998-4502-2021-13-2-224-237.
2. Gazalee va G. I., Mamonov S. V., Bratygin E. V., Klyushnikov A. M. Problems and innovative solutions related to the processing of secondary raw materials. Gornyy informatsionno-analiticheskiy byulleten. 2017. No. 1. pp. 257–272.
3. Arustamy an M. A., Kalinin E. P., Alekseeva Yu. B. Increasing of data of dump slags concentration at Balkhash copper-smelting plan. Tsvetnye Metally. 2016. No. 10. pp. 54–57. DOI: 10.17580/tsm.2016.10.08.
4. Bellemans I., De Wilde E., Moelans N., Verbeken K. Metal losses in pyrometallurgical operations – A review. Advances in Colloid and Interface Science. 2018. Vol. 255. pp. 47–63. DOI: 10.1016/j.cis.2017.08.001.
5. Gazaleeva G. I., Mamonov S. V., Sladkov M. M., Kutepov A. V. Increasing of metallurgical results during the processing of copper slags of Ural mining and metallurgical company. Tsvetnye Metally. 2016. No. 3. pp. 18–22. DOI: 10.17580/tsm.2016.03.03.
6. Sabanova M. N ., Orekhova N. N. Potential use of flotation for the processing of environmentally unsafe old copper smelting slags. Gornyy informatsionno-analiticheskiy byulleten. 2017. No. 2. pp. 336–343.
7. Sanakulov K. S ., Khasanov A. S. Processing of copper slags. Tashkent : Fan, 2007. 238 p.
8. Yakubov M. M., Negmatov S. S., Shoobidov Sh. A., Yusupkhodzhaev A. A. et al. Developing and adopting a process for reducing the concentration of copper in the dump slags generated by Almalyk MMC’s copper smelter. Gornyi Zhurnal. 2009. S1. pp. 78, 79.
9. Selivanov E. N., Belyaev V. V., Gulyaeva R. I., Kopytov A. S. et al. Phase composition of the products and metals distribution during flotation of converter slags generated by Sredneuralsk Copper Smelter. Tsvetnye Metally. 2008. No. 12. pp. 23–27.
10. Evdokimenko A. K., Pimenova T. S., Shabalina R. I. Depletion of copper smelter slags. Tsvetnye Metally. 1987. No. 12. pp. 39–41.
11. Ochildiev K. T., Matkarimov S. T., Yusupkhodzhaev A. A. Low-waste technologies in the copper industry. Tashkent : TashGTU, 2020. 100 p.
12. Tauzhnyanskaya Z . A. The technology of recovering metals from slags, concentrator tailings and metallurgical slags adopted abroad. Moscow : Tsvetmetinformatsiya, 1978. pp. 42–47.
13. Moskalyk P. R., A lfantazi A. M. Review of copper pyrometallurgical practice: today and tomorrow. Minerals Engineering. 2003. Vol. 16. pp. 893–919. DOI: 10.1016/j.mineng.2003.08.002.
14. Shen H., Forssberg E. An overview of recovery of metals from slag. Waste Management. 2003. Vol. 23. pp. 933–949. DOI: 10.1016/s0956-053x(02)00164-2.
15. Kvyatkovskiy S. A. , Kozhakhmetov S. M., Sokolovskaya L. V., Semenova A. S. Developing a Vanyukov furnace process for depleting the dump slags generated by Balkhash Copper Smelter. Efficient Production of Non-Ferrous, Rare and Noble Metals: International Conference Proceedings. Almaty, 2018. pp. 241–246.
16. Shadrunova I. V., O zhogina E. G., Kolodezhnaya E. V., Gorlova O. E. Slag disintegration selectivity. Journal of Mining Science. 2013. Vol. 49, No. 5. pp. 831–838.
17. Shadrunova I. V., Go rlova O. E., Kolodezhnaya E. V. Technology for producing high-grade concentrates from waste metallurgical slags. Obogashchenie Rud. 2019. No. 4. pp. 54–60.
18. Sitko E. A., Sukurov B. M., Ruzakhunova G. S., Omirzakov B. A. et al. Comprehensive processing of converter slags. Kompleksnoe ispolzovanie mineralnogo syrya. No. 2. 2018. pp. 45–57. DOI: 10.31643/2018/6445.6.
19. Huang H., Dai Z., H u Y., Sun W., Cao X. Technology and mechanism research for crystal phase regulating flotation of copper-containing slag. XXVIII International Mineral Processing Congress Proceedings. Québec, 2016. Paper ID 853.
20. Karimi N., Vaghar R., T avakoli Mohammadi M. R., Hashemi S. A. Recovery of copper from the slag of Khatoonabad flash smelting furnace by flotation method. Journal of the Institution of Engineers (India): Ser. D. 2013. Vol. 94, Iss. 1. pp. 43–50.
21. Xue P., Li G., Qin Q. Re covery of copper from slow cooled Ausmelt furnace slag by floatation. Characterization of Minerals, Metals, and Materials, 2015. Proceedings of a symposium TMS. March 15–19, 2015. Orlando, Florida, USA. pp. 621–628.
22. Sabanova M. N., Savin A. G ., Shadrunova I. V., Orekhova N. N. Typification of Ural region copper slags; practice and prospects of flotation processing at operating concentration plants. Tsvetnye Metally. 2013. No. 8. pp. 14–19.
23. Fernandez-Caliani J. C., Rios G., Martinez J., Jimenez F. Occurrence and speciation of copper in slags obtained during the pyrometallurgical processing of chalcopyrite concentrates at the Huelva smelter (Spain). Journal of Mining and Metallurgy. Section B: Metallurgy. 2012. Vol. 48 B. pp. 161–171. DOI: 10.2298/JMMB111111027F.

24. Sabanova M. N., Orekhova N. N., Gorlova O. E. Flotation of copper smelter slags using an additional collector: Process features. Aktualnye problemy sovremennoy nauki, tekhniki i obrazovaniya. 2018. Vol. 9, No. 1. pp. 10–14.
25. Mamonov S. V., Gazaleeva G. I ., Dresvyankina T. P., Volkova S. V. Copper smeltery final dump slag processing technology improvement. Obogashchenie Rud. 2018. No. 1. pp. 38–42. DOI: 10.17580/or.2018.01.07.
26. Kvyatkovskiy S. A., Sitko E. A., Sukurov B. A., Omirzakov B. A. Effect of the temperature and amount of flux in the burden on the structure and phase composition of slags generated by Balkhash Copper Smelter. Metallurg. 2019. No. 10. pp. 82–89.
27. Chernukhin S. A., Abdullin R. A ., Abdrakhmanov A. A., Safin G. G. Overview of crusher design options and application. Molodoy uchenyy. 2015. No. 22. pp. 202–206.
28. Paladeeva N. I. Impact crushers. Izvestiya vuzov. Gornyy zhurnal. 1996. No. 10-11. pp. 139–145.
29. Polyanskiy L. I., Asylgareev R. T., Kobelev M. V., Kozlovskiy A. S. Method of preparation of metallurgical slags for enrichment. Patent RF, No. 2309186. Applied: 19.10.2005. Published: 27.10.2007.
30. Saitov V. I. Impact crushing pro cess features. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2012. No. 1. pp. 125–128.
31. Gazaleeva G. I., Bulatov K. V., L evchenko E. N. The choosing special methods of disintegration for very complicated rare ore. IMPC 2018: 29th International Mineral Proceedings Congress. 2019. Canadian Institute of Mining, Metallurgy and Petroleum. pp. 258–268.
32. Matveev A. I., Lvov E. S., Vinokur ov V. R. New in ore preparation – Multiple impact crushing and grinding machines. Gornyy informatsionno-analiticheskiy byulleten. 2016. No. S21. pp. 242–252.

Language of full-text russian
Full content Buy