Journals →  Gornyi Zhurnal →  2023 →  #2 →  Back

ArticleName Accuracy of digital terrain modeling based on periodic airborne laser scanning of a mining object
DOI 10.17580/gzh.2023.02.09
ArticleAuthor Mustafin M. G., Kologrivko A. A., Vasiliev B. Yu.

Saint Petersburg Mining University, Saint-Petersburg, Russia:

M. G. Mustafin, Head of Department, Associate Professor, Doctor of Engineering Sciences
B. Yu. Vasiliev, Post-Graduate Student,

Belarusian State University, Minsk, Belarus:

A. A. Kologrivko, Dean, Candidate of Engineering Sciences


At present, monitoring of deformation processes, especially at hazardous industrial facilities, is effectively performed on the basis of digital modeling. Comparison of the models in each observation cycle will make it possible to identify zones of dangerous deformations. These models can be constructed using various electronic measurement tools. The paper presents the results of research on a complex deformation process at a mining object: a slope system containing an open pit and an undermined territory. The relevance of the work is justified by the lack of practical recommendations for a digital terrain model (DTM, including the manmade relief represented, for example, by an open pit) of a certain accuracy, required when analyzing the dynamics of deformation processes and when amending the deformation observation procedure. We consider the problem of assessing the accuracy of DEM to allow better approximation to the real-life data. Due to the fact that observations record the finite deformations, the results will be universal, so the technique can be used for all types of rock masses. Creation of the digital terrain models included the classified airborne laser scanning data divided into two parts: the key points of relief—for the model construction; the remaining points of the earth’s surface—for the accuracy estimation. The modeling was carried out at a spatial resolution of 3, 5 and 10 m using the following spatial interpolation methods: Kriging, Radial Basis Function, Natural Neighbor, Triangulation, Minimum Curvature, Inverse Distance. The models are compared, the accuracy analysis is carried out and the application recommendations are offered.

keywords Deformation process monitoring, digital terrestrial model, spatial interpolation methods, kriging, radial basis function, inverse distance

1. Ponomarenko M. R., Kutepov Yu. I., Shabarov A. N. Open pit mining monitoring support with information and analysis using web mapping technologies. GIAB. 2022. No. 8. pp. 56−70.
2. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37, No. 1. pp. 151−162.
3. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. GIAB. 2022. No. 6-2. pp. 60−79.
4. Chuanfa Chen, Yixuan Bei, Yanyan Li, Weiwei Zhou. Effect of interpolation methods on q uantifying terrain surface roughness under different data densities. Geomorphology. 2022. Vol. 417. 108448. DOI: 10.1016/j.geomorph.2022.108448
5. Huxiong Li, Weiya Ye, Jun Liu, Weikai Tan, Saied Piraste et al. High-Resolution Terrain Modeling Using Airborne LiDAR Data with Transfer Learning. Remote Sensing. 2021. Vol. 13, Iss. 17. 3448. DOI: 10.3390/rs13173448
6. Menshikov S. N., Dzhalyabov A. A., Vasilev G. G., Leonovich I. A., Ermikov O. M. Spatial Models Developed Using Laser Scanning at Gas Condensate Fields in the Northern Construction-Climatic Zone. Journal of Mining Institute. 2019. Vol. 238. pp. 430−437.
7. Hashemi-Beni L., Jones J., Thompson G., Johnson C., Gebrehiwot A. et al. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors. 2018. Vol. 18, Iss. 11. 3843. DOI: 10.3390/s18113843
8. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Journal of Mining Institute. 2022. Vol. 254. pp. 173−179.
9. Luethje F., Tiede D., Eisank C. Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach. ISPRS International Journal of Geo-Information. 2017. Vol. 6, Iss. 1. 9. DOI: 10.3390/ijgi6010009
10. Liu X. A New Framework for Accuracy Assessment of Lidar-Derived Digital Elevation Models. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. Vol. V-4. pp. 67−73.
11. Altaeva A. A., Shamganova L. S., Zhirnov A. A. Digital simulation of the Orlov deposit surface using geoinformation technologies. Gornyi Zhurnal. 2019. No. 4. pp. 77−80. DOI: 10.17580/gzh.2019.04.17

12. Sennov A. S., Mukhametdinov A. V., Myasichenko A. I., Kalugin A. V. Application of information technologies in the analyses of groundwater in the Upper Kama Potash–Magnesium Salt Deposits. Gornyi Zhurnal. 2021. No. 4. pp. 63–68. DOI: 10.17580/gzh.2021.04.09
13. Habib M. Evaluation of DEM interpolation techniques for characterizing terrain roughness. Catena. 2021. Vol. 198. 105072. DOI: 10.1016/j.catena.2020.105072
14. Rusli N., Rafee Majid M., Nur Fakihin Auni A. Razali, Nur Fatma Fadilah Yaacob. Accuracy Assessment of DEM from UAV and TanDEM-X Imagery. Proceedings 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications. Penang, 2019. pp. 127–131.
15. Das R. K., Sailesh Samanta, Jana S. K., Rosa R. et al. Polynomial interpolation methods in develop ment of local geoid model. The Egyptian Journal of Remote Sensing and Space Sciences. 2018. Vol. 21, Iss. 3. pp. 265–271.
16. Ahmed H. M., Mohamed E. A., Bahaa S. A. Evaluating two numerical methods for developing a local geoid model and a local digital elevation model for the Red Sea Coast, Egypt. Journal of King Saud University – Engineering Sciences. 2021. DOI: 10.1016/j.jksues.2021.04.004
17. Banasik P., Bujakowski K. The use of quasigeoid in leveling through terrain obstacles. Reports on Geodesy and Geoinformatics. 2017. Vol. 104. pp. 57–64.
18. Borowski Ł., Banaś M. The Best Robust Estimation Method to Determine Local Surface. Baltic Journal of Modern Computing. 2019. Vol. 7, No. 4. pp. 525–540.
19. Maan Habib, Yazan Alzubi, Ahmad Malkawi, Mohammad Awwad. Impact of interpolation techniques on the accuracy of large-scale digital elevation model. Open Geosciences. 2020. Vol. 12. pp. 190–202.
20. Fernández T., Pérez-García J. L., Gómez-López J.-M., Cardenal J., Calero J. et al. Multitemporal Analysis of Gully Erosion in Olive Groves by Means of Digital Elevation Models Obtained with Aerial Photogrammetric and LiDAR Data. ISPRS International Journal of Geo-Information. 2020. Vol. 9, Iss. 4. 260. DOI: 10.3390/ijgi9040260
21. Bui L. K., Glennie C. L., Hartzell P. J. Rigorous Propagation of LiDAR Point Cloud Uncertainties to Spatially Regular Grids by a TIN Linear Interpolation. IEEE Geoscience and Remote Sensing Letters. 2021. Vol. 19. 7003105. DOI: 10.1109/LGRS.2021.3134587
22. Li Li, Nearing M. A., Nichols M. H., Polyakov V. O., Guertin D. P. et al. The effects of DEM interpolation on quantifying soil surface roughness using terrestrial LiDAR. Soil & Tillage Research. 2020. Vol. 198. 104520. DOI: 10.1016/j.still.2019.104520
23. Ajvazi B., Czimber K. A comparative analysis of different DEM interpolation methods in GIS: case study of Rahovec, Kosovo. Geodesy and Cartography. 2019. Vol. 45, Iss. 1. pp. 43–48.
24. Qinghua Guo, Wenkai Li, Hong Yu, Otto Alvarez. Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods. Photogrammetric Engineering & Remote Sensing. 2010. Vol. 76, No. 6. pp. 701–712.
25. Amodio A. M., Aucelli P. P. C., Garfi V., Rosskopf C. M. Digital photogrammetric analysis approaches for the realization of detailed terrain models. Rendiconti Online della Società Geologica Italiana. 2020. Vol. 52. pp. 69–75.
26. Maan Habib, Yazan Alzubi, Ahmad Malkawi, Mohammad Awwad. Impact of interpolation techniques on the accuracy of large-scale digital elevation model. Open Geosciences. 2020. Vol. 12. pp. 190–202.
27. Boreggio M., Bernard M., Gregoretti C. Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study from Rovina di Cancia Basin (North-Eastern Italian Alps). Frontiers in Earth Science. 2018. Vol. 6. 89. DOI: 10.3389/feart.2018.00089
28. Ying Zhu, Xuejun Liu, Jing Zhao, Jianjun Cao, Xiaolei Wang et al. Effect of DEM Interpolation Neighbourhood on Terrain Factors. ISPRS International Journal of GeoInformation. 2019. Vol. 8, Iss. 1. 30. DOI: 10.3390/ijgi8010030
29. Ibrahim P. O., Sternberg H., Samaila-Ija H. A., Adgidzi D., Nwadialor I. J. Modelling topob athymetric surface using a tria ngulation irregular network (TIN) of Tunga Dam in Nigeria. Applied Geomatics. 2022. DOI: 10.1007/s12518-022-00438-y
30. Jordan G. Adaptive smoothing of valleys in DEMs using TIN interpolation from ridgeline elevations: An application to morphotectonic aspect analysis. Computers & Geosciences. 2007. Vol. 33, Iss. 4. pp. 573–585.
31.Tinghua Ai, Shu Ke, Min Yang, Jingzhong Li. Envelope generation and simplification of polylines using Delaunay triangulation. International Journal of Geographical Information Science. 2017. Vol. 31, Iss. 2. pp. 297–319.
32. Maduako Nnamdi Ikechukwu, Elijah Ebinne, Ufot Idorenyin, Ndukwu Ike Raphael. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Journal of Geographic Information System. 2017. Vol. 9, No. 3. pp. 354–371.
33. Cǎţeanu M., Ciubotaru A. Accuracy of Ground Surface Interpolation from Airborne Laser Scanning (ALS) Data in Dense Forest Cover. ISPRS International Journal of Geo-Information. 2020. Vol. 9, Iss. 4. DOI: 10.3390/ijgi9040224
34. Salekin S., Burgess J. H., Morgenroth J., Mason E. G., Meason D. F. A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation. ISPRS International Journal of Geo-Information. 2018. Vol. 7, Iss. 8. 300. DOI: 10.3390/ijgi7080300
35. Arun P. V. A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Sciences. 2013. Vol. 16, Iss. 2. pp. 133–139.
36. Stereńczak K., Ciesielski M., Bałazyet R., Zawiła-Niedźwiecki T. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. European Journal of Remote Sensing. 2016. Vol. 49. pp. 599–621.
37. Tao Zhang, Xiaosu Xu, Shengbao Xu. Method of establishing an underwater digital elevation terrain based on kr iging interpolation. Measurements. 2015. Vol. 63. pp. 287–298.
38. Chuanfa Chen, Yuan Gao, Yanyan Li, Yixuan Bei. Structure tensor-based interpolation for the derivation of accurate digital elevation models. Catena. 2022. Vol. 208. 105733. DOI: 10.1016/j.catena.2021.105733
39. Chuanfa Chen, Yanyan Li, Na Zhao, Bin Guo, Naixia Mou. Least Squares Compactly Supported Radial Basis Function for Digital Terrain Model Interpolation from Airborne Lidar Point Clouds. Remote Sensing. 2018. Vol. 10, Iss. 4. 587. DOI: 10.3390/rs10040587

Language of full-text russian
Full content Buy