Журналы →  Chernye Metally →  2023 →  №2 →  Назад

Cast Iron Production
Название Alloying of ICh280Kh29NL and ICh330Kh17L grades cast iron to improve quality
DOI 10.17580/chm.2023.02.01
Автор A. A. Zhumaev, Yu. N. Mansurov, V. Yu. Kulikov, Kh. I. Akhmedov
Информация об авторе

Navoi State Mining and Technological University (Navoi, Uzbekistan):

A. A. Zhumaev, Dr. Eng., Associate Prof., e-mail: ahmadjon_jumayev@mail.ru

Kh. I. Akhmedov, Cand. Eng., Associate Prof.

 

Tashkent State Transport University (Tashkent, Uzbekistan):
Yu. N. Mansurov, Dr. Eng., Professor, e-mail: yulbarsmans@gmail.com

 

Abylkas Saginov Karaganda Technical University (Karaganda, Kazakhstan):

V. Yu. Kulikov, Cand. Eng., Professor

Реферат

The hardness and microstructure of ICh280Kh29NL and ICh330Kh17L grades cast iron, the most common for the manufacture of parts of mining and metallurgical equipment operating under wear conditions, have been studied. The thermodynamic analysis of multicomponent Fe–2,6C–Cr–AE systems in order to study the processes of crystallization of alloys, the formation of the structure of the metal base in them, as well as the formation and transformation of carbide phases has been carried out. Based on the analysis, the optimal amount and ratio of alloying elements (Cr, Mn, Si and Ti) in the Fe–2.6C–Cr–AE system, necessary for the formation of a metal matrix and a carbide phase, which provide the maximum hardness of the alloy, was determined. State diagrams of three-, four- and multi-component systems such as Fe–C–Cr, Fe–C–Ni, Fe–C–Mn, Fe–C–V, Fe–C–Mo, Fe–C–Co, Fe–C–Cr–Ni, Fe–C–Cr–Mn, Fe–C–Cr–Mn, their iso- (at a temperature of 200 °C) and polythermal sections, which made it possible to enrich the theory of state diagrams - the basis of cast irons in the range of chromium concentrations (from 16 to 34 % ), nickel (0.4 to 3 %), manganese (0.4 to 2 %), carbon (2.4 to 4 %), silicon (0.3 to 2 %), titanium (0 .4 to 5 %), molybdenum (from 0.2 to 3 %), vanadium (from 0.01 to 2 %). Phase equilibrium points, including alloyed iron-based solid solution, multicomponent carbides, a mixture of phases based on ironbased solid solution and carbides have been determined. An economical grade of wear-resistant white cast iron with the following composition: carbon 3.2–3.4 %, manganese 0.4–0.6 %, chromium 16–18 %, silicon 0.4–0.6 %, nickel 0.4–0.6 %, molybdenum up to 0.4–0.5 %, the balance is iron, has been created.
The authors of the article express their gratitude to N. O. Korotkova (NUST MISIS) for her help in conducting research in terms of electron microscopy, the results of which are used in this article.

Ключевые слова Wear-resistant cast iron, microhardness, hardness, microstructure, structure, metal base, carbide phase.
Библиографический список

1. Garber М. Е. Wear-resistant white cast irons: properties, structure, technology, operation. Moscow: Mashinostroenie, 2010. 280 p.
2. Kopyciński D., Piasny S. Influence of tungsten and titanium on the structure of chromium cast iron. Archives of Foundry Engineering. 2012. No. 12 (1). pp. 57–60.
3. Zhumaev А. А., Baranovskiy К. E., Mansurov Yu. N., Akhmedov Kh. I. Results of study of the structure of castings from white wear resistant irons. Chernye Metally. 2022. No. 2. pp. 4–10.
4. Pranav U., Agustina M., Mücklich F. A Comparative study on the influence of chromium on the phase fraction and elemental distribution in as-cast high chromium cast irons: simulation vs. experimentation. Metals. 2020. No. 12. pp. 4–17.
5. Ponomareva A. V., Ruban A. V., Mukhamedov B. O., Abrikosov I. A. Effect of multicomponent alloying with Ni, Mn and Mo on phase stability of BCC Fe–Cr alloys. Acta Materialia. 2018. Vol. 150. pp. 117–129.
6. Mukhamedov B. O., Ponomareva A. V., Abrikosov I. A. Spinodal decomposition in ternary Fe–Cr–Co-system. Journal Alloys Compd. 2017. Vol. 695. pp. 250–256.
7. Ali K., Ghosh P. S., Arya A. A DFT study of structural, elastic and lattice dynamical properties of Fe2Zr and FeZr2 intermetallics. Journal Alloys Compd. 2017. Vol. 723. pp. 611–619.
8. Konar B., Kim J., Jung I. Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd. Journal Phase Equilibria and Diffusion. 2016. Vol. 37, Iss. 4. pp. 438–458.
9. Zhang Y., Li J., Shi C., Qi Y., Zhu Q. Effect of heat treatment on the microstructure and mechanical properties of nitrogen-alloyed high-Mn austenitic hot work die steel. Metals. 2017. No. 7. p. 94.
10. Abdel-Aziz Kh., El-Shennawy M., Omar A. A. Microstructural characteristics and mechanical properties of heat-treated high chromium white cast iron alloys. International Journal of Applied Engineering Research. 2017. Vol. 12. No. 14. pp. 4675–4686.
11. Oh H. K., Kim I. W., Park S. M., Hong S. I. Stress-strain curves and crack formation in an ingot of stainless steel 21-4N under high-temperature compression. Met. Sci. Heat Treat. 2017. Vol. 59. pp. 24–29.
12. Ko J. Y., Hong S. I. Microstructural evolution and mechanical performance of carbon-containing Fe–Co–Cr–Mn–Ni–C high entropy alloys. J. Alloy. Compd. 2018. Vol. 743. pp. 115–125.
13. Lu J., Hultman L., Holmstrom E., Antonsson K. H., Grehk M., Li W., Vitos L., Golpayegani A. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016. Vol. 111. pp. 39–46.
14. Zhumaev А. А., Mansurov Yu. N., Mamatkulov D. D., Abdullaev К. S. Phase transformations in iron-carbon alloys doped with rare-earth and transition metals. Chernye Metally. 2020. No. 11. pp. 22–29.
15. Kolokoltsev V. M., Petrochenko E. V., Molochkova O. S. Influence of boron modification and cooling conditions during solidification on structural and phase state of heat- and wearresistant white cast iron. CIS Iron and Steel Review. 2018. Vol. 15. pp. 11–15.
16. Baranovskiy К. E., Mansurov Yu. N., Zhumaev А. А., Duvalov P. Yu. Increasing the service life of parts made of wear-resistant chromium cast irons. Metallurgiya: respublikanskiy mezhvedomstvenniy sbornik nauchnykh trudov. Minsk: BNNU. 2019. Iss. 40. pp. 78–83.
17. Abrikosov I. A., Ponomareva A. V., Steneteg P., Barannikova S. A., Alling B. Recent progress in simulations of the paramagnetic state of magnetic materials. Current Opinion Solid State Materials Science. 2016. Vol. 20. pp. 85–106.
18. Ahmad J. K. Melting of a new carbon–free waxed sponge iron in Electric Arc Furnace (EAF) for steelmaking. International Journal of Materials Science and Applications. 2015. Vol. 4. No. 1-2. pp. 1–6.
19. Shamelkhanova N. A., Uskenbayeva A. M., Volochko A. T., Korolyov S. P. The study of the role of fullerene black additive during the modification of ductile cast iron. Materials Science Forum. Switzerland. 2017. Vol. 891. pp. 235–241.
20. Ying Z., Hideo N. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron and its counteraction method. China Mat. Sci. Tech. Assoc. Iron Steel Technol. 2014. No. 11. pp. 409–416.
21. Kudrya А. V., Sokolovskaya E. А., Akhmedova T. Sh., Perezhogin V. Yu. Information content of hard alloy structures morphology for the forecast of facings quality. Tsvetnye Metally. 2017. No. 12. pp. 78–83.
22. Zhumaev А. А., Baranovskiy К. E., Mansurov Yu. N. Analysis of the microstructure of wearresistant chromium cast irons after heat treatment. Lityo i metallurgiya. 2021. No. 1. pp. 142–148.
23. Fava A., Montanari R., Richetta M., Varone A. Analysis of relaxation processes in HNS due to interstitial-substitutional pairs. Metals. 2017. No. 7. p. 246.
24. Pierce D. T., Jiménez J. A., Bentley J., Raabe D., Oskay C., Wittig J. E. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater. 2014. Vol. 68. pp. 238–253.
25. Xiong R., Peng H., Si H., Zhang W., Wen Y. Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels. Mater. Sci. Eng. A. 2014. Vol. 598. pp. 376–386.
26. Konca E., Tur K., Kocx E. Effects of alloying elements (Mo, Ni, and Cu) on the austemperability of GGG-60 ductile cast iron. Metals. 2017. No. 7. p. 320.
27. Seidu S., Owoeye S., Owoyemi H. Assessing the effect of copper additions on the corrosion behaviour of grey cast iron. Leonardo Electron J Pract Technol. 2015. Vol. 26. pp. 49–58.
28. Kvon Sv. S., Kulikov V. Y., Filippova T. S., Omarova E. E. Using high-chromium iron as material for production of the equipping components of mine shafts. Metalurgija. 2016. Vol. 55 (2). pp. 206–208.
29. Scheidhauer N, Dommaschk C, Wolf G. Oxidation Resistant Cast Iron for High Temperature Application. Materials Science Forum. 2018. Vol. 925. pp. 393–399.
30. Matteis P., Scavino G., Castello A., Firrao D. High temperature fatigue properties of a Si-Mo ductile cast iron. Procedia Materials Science. 2014. Jan. Vol. 3. No. 1. pp. 2154-2159.
31. Elliott P. Choose materials for high – temperature environments. NACE International 55th Annual Conference and Exhibition CORROSION 2000. 2000. Mar. 26-31, Orlando, FL, USA.
32. GOST 1497–84. Metals. Methods of tension test. Introduced 01.01.1986.

Language of full-text русский
Полный текст статьи Получить
Назад