Библиографический список |
1. Ojeda Pardo F. R., Sánchez Figueredo R. P., Belette Fuentes O., Quiroz Cabascango V. E., Mosquera Urbano A. P. Metallographic properties evaluation of the specimens obtained by the vibratory method (cast iron ISO 400-12) // Journal of Physics: Conference Series. 2022. 2388. P. 012058. DOI: 10.1088/1742-6596/2388/1/012058 2. Savchenkov S., Beloglazov I. Features of the process obtaining of Mg-Zn-Y master alloy by the metallothermic recovery method of yttrium fluoride melt // Crystals. 2022. Vol. 12, Iss. 6. P. 771. DOI: 10.3390/CRYST12060771 3. Bolobov V. I., Chupin S. A., Bochkov V. S., Akhmerov E. V., Plaschinskiy V. A. The effect of finely divided martensite of austenitic high manganese steel on the wear resistance of the excavator buckets teeth // Key Engineering Materials. 2020. Vol. 854. P. 3–9. DOI: 10.4028/www.scientific.net/KEM.854.3 4. Shestakov A. K., Sadykov R. M., Petrov P. A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell // E3S Web of Conferences. 2021. Vol. 266. DOI: 10.1051/e3sconf/202126609002 5. Fedorova E., Pupysheva E., Morgunov V. Modelling of red-mud particle-solid distribution in the feeder cup of a thickener using the combined CFDDPM approach // Symmetry. 2022. Vol. 14. P. 2314. DOI: 10.3390/SYM14112314 6. Bazhin V. Y., Nguyen H. H. Vietnamese metallurgy on the way out of the crisis with the use of automated control systems // AIP Conference Proceedings. 2022. 2467. P. 030018. DOI: 10.1063/5.0092750 7. Cabascango V. E. Q., Bazhin V. Y., Martynov S. A., Pardo F. R. O. Automatic control system for thermal state of reverberatory furnaces in production of nickel alloys // Metallurgist. 2022. Vol. 66. P. 104–116. DOI: 10.1007/S11015-022-01304-3 8. Bolshunov A. V., Vasilev D. A., Ignatiev S. A., Dmitriev A. N., Vasilev N. I. Mechanical drilling of glaciers with bottom-hole scavenging with compressed air // Ice and Snow. 2022. Vol. 62. P. 35–46. DOI: 10.31857/S2076673422010114 9. Shklyarskiy Y. E., Batueva D. E. Operation mode selection algorithm development of a wind-diesel power plant supply complex // Journal of Mining Institute. 2022. Vol. 253. P. 115–126. DOI: 10.31897/PMI.2022.7 10. Bazhin V., Masko O. Monitoring of the behaviour and state of nanoscale particles in a gas cleaning system of an ore‐thermal furnace // Symmetry. 2022. Vol. 14, Iss. 5. P. 923. DOI: 10.3390/SYM14050923 11. ГОСТ 33718–2015. Краны грузоподъемные. Проволочные канаты. Уход и техническое обслуживание, проверка и отбраковка. — Введ. 01.04.2017. 12. Zhou P., Zhou G., Zhu Z., He Z., Ding X., Tang C. A review of non-destructive damage detection methods for steel wire ropes // Appl. Sci. 2019. Vol. 9. P. 2771. 13. РД РОСЭК-012–97. Канаты стальные. Контроль и нормы браковки. — М. : РОСЭК, 1997. — 49 с. 14. Awrejcewicz J., Oikonomou V. K., Boikov A., Payor V. The present issues of control automation for levitation metal melting // Symmetry. 2022. Vol. 14. P. 1968. DOI: 10.3390/SYM14101968 15. Сухоруков В. В., Котельников В. С. Мониторинг состояния стальных канатов автоматизированными средствами технического диагностирования // Безопасность труда в промышленности. 2019. № 9. С. 72–81. 16. Wire rope monitoring gives customers a liftin efficiency, production line safety. URL: https://www.konecranes.com/discover/wire-ropemonitoring-gives-customers-lift-in-efficiency-production-line-safety (дата обращения : 06.01.2023). 17. Wire rope inspection & monitoring system. URL: https://www.uniquegroup.com/product/ug-wire-rope-inspection-monitoring-system/ (дата обращения : 06.01.2023). 18. Sergeev V. V., Cheremisina O. V., Fedorov A. T., Gorbacheva A. A., Balandinsky D. A. Interaction features of sodium oleate and oxyethylated phosphoric acid esters with the apatite surface // ACS Omega. 2022. Vol. 7, Iss. 3. P. 3016–3023. DOI: 10.1021/acsomega.1c06047 19. Cheremisina O. V., Ponomareva M. A., Sergeev V. V., Mashukova Y. A., Balandinsky D. A. Extraction of rare earth metals by solid-phase extractants from phosphoric acid solution // Metals. 2021. Vol. 11. P. 991. DOI: 10.3390/met11060991 20. Greaves D., Jin S., Wong P., Kuskova Y. V., Erokhina O. O., Simakov A. S. Problematics and perspectives of the development of automatic control systems for concentration tables using computer simulation // Journal of Physics: Conference Series. 2019. Vol. 1384, Iss. 1. 012023. DOI: 10.1088/1742-6596/1384/1/012023 21. Simakov A. S., Trifonova M. E., Gorlenkov D. V. Virtual analyzer of the voltage and current spectrum of the electric arc in electric arc furnaces // Russian Metallurgy (Metally). 2021. Vol. 6. P. 713–719. DOI: 10.1134/S0036029521060252 22. Амейт Ю. и др. Возможности для улучшения визуального контроля канатов (ВК). Рекомендация МОКаТ № 30 (перевод с англ.). — 81 с. 23. Kashurin R. R., Gerasev S. A., Litvinova T. E., Zhadovskiy I. T. Prospective recovery of rare earth elements from waste // Journal of Physics: Conference Series. 2020. Vol. 1679. P. 052070. DOI: 10.1088/1742-6596/1679/5/052070 24. Tarabarinova T. A., Golovina E. I. Capitalization of mineral resources as an innovation ecological strategy // Geology and Mineral Resources of Siberia. 2021. Vol. 4. P. 86–96. DOI: 10.20403/2078-0575-2021-4-86-96
25. Litvinova T., Kashurin R., Zhadovskiy I., Gerasev S. The kinetic aspects of the dissolution of slightly soluble lanthanoid carbonates // Metals. 2021. Vol. 11. P. 1793. DOI: 10.3390/MET11111793 26. Zakirova G., Pshenin V., Tashbulatov R., Rozanova L. Modern bitumen oil mixture models in ashalchinsky field with low-viscosity solvent at various temperatures and solvent concentrations // Energies. 2022. Vol. 16. P. 395. DOI: 10.3390/EN16010395 27. Кульчицкий А. А., Потапов А. И., Смирнов А. Г., Бойков В. И. Система контроля геометрии осесимметричных изделий с угловым зеркальным преобразователем // Известия вузов. Приборостроение. 2020. Т. 63. № 8. С. 720–726. 28. Yaman O., Karakose M. Auto-correlation based elevator rope monitoring and fault detection approach with image processing // Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017. P. 1–5. DOI: 10.1109/IDAP.2017.8090176 29. Vasilyeva N. V., Boikov A. V., Erokhina O. O., Trifonov A. Y. Automated digitization of radial charts // Journal of Mining Institute. 2021. Vol. 247. P. 82–87. DOI: 10.31897/PMI.2021.1.9 30. Sun H. X., Zhang Y. H., Luo F. L. Texture segmentation and boundary recognition of wire rope images in complicated background // Acta Photonica Sinica. 2010. Vol. 39. P. 1666–1671. 31. Махов В. Е., Потапов А. И., Шалдаев С. Е. Исследование границ изображения методом выделения контраста с использованием оптикоэлектронной системы. Часть 1. Научно-методические принципы контроля границ изображения методом выделения контраста // Контроль. Диагностика. 2017. № 10. С. 44–51. 32. Кофнов О. В. Модель и алгоритмы обработки цифровых изображений для оценивания геометрических параметров материалов с периодической структурой: дис. … канд. тех. наук. — СПб. : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2015. — 175 с. 33. Pshenin V., Liagova A., Razin A., Skorobogatov A., Komarovsky M. Robot crawler for surveying pipelines and metal structures of complex spatial configuration // Infrastructures. 2022. Vol. 7. P. 75. DOI: 10.3390/INFRASTRUCTURES7060075 34. Platzer E. S., Nägele J., Wehking K. H., Denzler J. HMM – based defect localization in wire ropes – a new approach to unusual subsequence recognition // Lecture Notes in Computer Science. 2009. Vol. 5748. P. 442–451. DOI: 10.1007/978-3-642-03798-6_45 35. Platzer E. S., Wehking K. H., Denzler J. On the suitability of different features for anomaly detection in wire ropes // Proceedings of the International Conference on Computer Vision, Imaging and Computer Graphics, Lisboa, Portugal, 5–8 February 2009. P. 296–308. 36. Boikov A., Payor V., Savelev R., Kolesnikov A. Synthetic. Data generation for steel defect detection and classification using deep learning // Symmetry. 2021. Vol. 13, Iss. 7. 1176. DOI: 10.3390/sym13071176 37. Zakharov L., Martyushev D., Ponomareva I. N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. 2022. Vol. 253. P. 23–32. DOI: 10.31897/PMI.2022.11 38. Zhou P., Zhou G., He Z., Tang C., Zhu Z., Li W. A novel texture-based damage detection method for wire ropes // Measurement. 2019. Vol. 148. 106954. DOI: 10.1016/j.measurement.2019.106954 39. Huang X., Liu Z., Zhang X., Kang J. et al. Surface damage detection for steel wire ropes using deep learning and computer vision techniques // Measurement. 2020. Vol. 161. 107843. DOI: 10.1016/j.measurement.2020.107843 40. Булатов В. В. Оптико-электронная система детектирования пороков листового стекла на основе технологии технического зрения: дис. … канд. тех. наук. — СПб. : Национальный минерально-сырьевой университет «Горный», 2013. — 149 с. |