Журналы →  Цветные металлы →  2023 →  №4 →  Назад

Автоматизация металлургических процессов
Название Технология дополненной реальности как средство технического обслуживания оборудования металлургических производств
DOI 10.17580/tsm.2023.04.02
Автор Котелева Н. И., Вальнев В. В., Королев Н. А.
Информация об авторе

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

Н. И. Котелева, доцент кафедры автоматизации технологических процессов и производств, канд. техн. наук, эл. почта: Koteleva_NI@pers.spmi.ru
В. В. Вальнев, аспирант кафедры автоматизации технологических процессов и производств
Н. А. Королев, ведущий научный сотрудник учебно-научного центра цифровых технологий, канд. техн. наук

Реферат

В эпоху развития цифровых технологий все большая их часть находит применение в разных отраслях промышленности. В статье предложен подход к использованию технологии дополненной реальности при обслуживании реакторов с перемешивающими устройствами. Подобный подход может быть применен к любому виду оборудования, он легко интегрируется в существующие системы автоматизации и не требует больших инвестиций на начальном этапе, предполагая постепенное усовершенствование и наращивание функционала. Показаны основной набор функциональных требований системы технического обслуживания оборудования на основе технологии дополненной реальности, способы оценки работоспособности системы, перспективы расширения и усовершенствования функциональных возможностей, направления интеграции таких систем в существующие автоматизированные системы управления на предприятии. Проверку эффективности системы с дополненной реальностью проводили путем определения среднего времени выполнения каждого этапа обслуживания и обработки результатов по критерию Манна – Уитни. Применение предложенного решения позволило сократить среднее время обслуживания единицы оборудования в 2,3 раза, а эффективность проведения работ увеличилась на 5 %.

Ключевые слова Дополненная реальность, техническое обслуживание, металлургия, цифровизация, IoT, системы управления, автоматизация, индустрия 4.0
Библиографический список

1. Ralph B. J., Woschank M., Miklautsch Ph., Konig A. et al. MUL 4.0: Systematic digitalization of a value chain from raw material to recycling. Procedia Manufacturing. 2021. Vol. 55. pp. 335–342.
2. Phua A., Davies C. H. J., Delaney G. W. A digital twin hierarchy for metal additive manufacturing. Computers in Industry. 2022. Vol. 140, Iss. 3. DOI: 10.1016/j.compind.2022.103667
3. Zhukovskii Y. L., Sizyakova E. V. The introduction of the system of energy saving and energy efficiency at the enterprises of metallurgy. Journal of Mining Institute. 2013. Vol. 202. pp. 153–155.
4. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29, No. 3. pp. 1521–1541.
5. Kunshin A. et al. Development of monitoring and forecasting technology energy efficiency of well drilling using mechanical specific energy. Energies. 2022. Vol. 15, Iss. 19. DOI: 10.3390/en15197408
6. Dvoynikov M., Kunshin A. A., Blinov P., Morozov V. Development of mathematical model for controlling drilling parameters with screw downhole motor. International Journal of Engineering, Transactions A: Basics. 2020. Vol. 33, No. 7. pp. 1423–1430.
7. Sun Y., Wang J., Wang X. Fault diagnosis of mechanical equipment in high energy consumption industries in China: A review. Mechanical Systems and Signal Processing. 2023. Vol. 186. 109833.
8. Aguilera J. J., Meesenburg W., Ommen T. et al. A review of common faults in large-scale heat pumps. Renewable and Sustainable Energy Reviews. 2022. Vol. 168, Iss. 12. 112826.
9. Gangsar P., Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing. 2020. Vol. 144, Iss. 4. 106908.
10. Khokhlov S., Abiev Z., Makkoev V. The choice of optical flame detectors for automatic explosion containment systems based on the results of explosion radiation analysis of methane-and dust-air mixtures. Applied Sciences (Switzerland). 2022. Vol. 12, No. 3. 1515.
11. Kottre A., Scholer T., Legat C. Applying engineering knowledge in alarm flood reduction to reduce machine downtime. IFAC-Papers OnLine. 2022. Vol. 55, No. 2. pp. 54–59.

12. Krishnan Umachandran, Roosefert Mohan T., Preetha Roselyn J., Uthra R. A. et al. Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Computers & Industrial Engineering. 2021. Vol. 157. DOI: 10.1016/j.cie.2021.107267
13. Plotnikova I., Sheveleva E., Narimanov R. Application of the system for electrical equipment diagnostics and its analysis. Studies in Systems, Decision and Control. 2023. Vol. 433. pp. 111–119.
14. Lipis E. A., Schislyaeva E. Qualification and mobility of transport complex personnel in the digitalization of shipbuilding. Transportation Research Procedia. 2022. Vol. 63. pp. 2138–2150.
15. Ramere M. D., Laseinde O. T. Optimization of condition-based maintenance strategy prediction for aging automotive industrial equipment using FMEA. Procedia Computer Science. 2021. Vol. 180. pp. 229–238.
16. Geng S., Wang X. Predictive maintenance scheduling for multiple power equipment based on data-driven fault prediction. Computers & Industrial Engineering. 2022. Vol. 164. 107898.
17. Saäski J., Salonen T., Liinasuo M., Pakkanen J. et al. Augmented reality efficiency in manufacturing industry: a case study. DS 50: Proceedings of Nord-Design 2008 Conference, Tallinn, Estonia. 21–23.08.2008. 2008. pp. 99–109.
18. Zheng L., Liu X., An Z., Li S. et al. A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection. Virtual Reality & Intelligent Hardware. 2020. Vol. 2, No. 1. pp. 12–27.
19. Costa C. M., Viega G., Sousa A. J., Rocha L. F. Modeling of video projectors in OpenGL for implementing a spatial augmented reality teaching system for assembly operations. 19th IEEE International Conference on Autonomous Robot Systems and Competitions. 2019. DOI: 10.1109/ICARSC.2019.8733617
20. Pogodaev A., Muzyleva I., Yazykova L., Kondratev S. The use of augmented reality technologies in electrical engineering. 2nd International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency. 2020. pp. 646–650.
21. Romo J. E., Tipantasi G. R., Andsluz V. H., Sanchez J. S. Virtual training on pumping stations for drinking water supply systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11614 LNCS. pp. 10–429.
22. Ko C., Lee H., Lim Y., Lee W. B. Development of augmented virtual reality-based operator training system for accident prevention in a refinery. Korean Journal of Chemical Engineering. 2021. Vol. 38, Iss. 8. pp. 1566–1577.
23. Beloglazov I. I., Petrov P. A., Bazhin V. Yu. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. No. 2. pp. 50–54. DOI: 10.17580/em.2020.02.12
24. Khokhlov V., Lukin V., Khokhlov S. Modelling full-colour images of Earth: simulation of radiation brightness field of Earth’s atmosphere and underlying surface. Annals of GIS. 2022. Vol. 29, Iss. 2. DOI: 10.1080/19475683.2022.2064911
25. Turman E., Wayne S. CFD modeling of LDPE autoclave reactor to reduce ethylene decomposition: Part 1 validating computational methods. Chemical Engineering Science. 2022. Vol. 257, Iss. 9. 117720.
26. Kondrasheva N. K., Kireeva E. V., Zyryanova O. V. Development of new compositions for dust control in the mining and mineral transportation industry. Journal of Mining Institute. 2021. Vol. 248, No. 2. pp. 272–280.

27. Zhdaneev О. V., Zaytsev А. V., Prodan Т. Possibilities for creating Russian high-tech bottomhole assembly. Journal of Mining Institute. 2021. Vol. 252, No. 6. pp. 872–884.
28. Bushuev A. B., Boykov V. I., Bystrov S. V., Grigoriev V. V. et al. Synthesis of optimal information and energy schemes of measuring and converting devices. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021. Vol. 22, No. 10. pp. 518–526.
29. Rajan V., Sobhana N. V., Jayakrishnan R. Machine fault diagnostics and condition monitoring using augmented reality and IoT. 2018 Second International Conference on Intelligent Computing and Control Systems. 2019. pp. 910–914.
30. Larsson T., Hestetun K., Hovland E., Skogestad S. Self-optimizing control of a large-scale plant: The Tennessee Eastman process. Industrial & Engineering Chemistry Research. 2001. Vol. 40, No. 22. pp. 4889–4901.
31. Sotaniemi V.-H., Taskila S., Ojamo H., Tanskanen J. Controlled feeding of lignocellulosic substrate enhances the performance of fed-batch enzymatic hydrolysis in a stirred tank reactor. Biomass & Bioenergy. 2016. Vol. 91. pp. 271–277.
32. Skamyin A., Belsky A., Dobush V., Gurevich I. Computation of nonlinear load harmonic currents in the presence of external distortions. Computation. 2022. Vol. 10, Iss. 3. 41.
33. Kurilin S., Dli M., Sokolov A. Linear induction motors for non-ferrous metallurgy. Non-ferrous Metals. 2021. No. 1. pp. 67–73. DOI: 10.17580/nfm.2021.01.09
34. Turman E. M., Wayne S. Leveraging fuzzy Logic PID controllers for accelerating chemical reactor CFD. Chemical Engineering Science. 2022. Vol. 262. p. 118029.
35. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Journal of Mining Institute. 2022. Vol. 256. pp. 677–685.
36. Paduloh P., Fatahillah H., Ramadhan M. A., Muhendra R. et al. Designing of temperature control for agitator machine using Internet of Thing. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 1063, Iss. 1. 012053.
37. Shilpa V., Vidya A., Pattar S. MQTT based secure transport layer communication for mutual authentication in IoT network. Global Transitions Proceedings. 2022. Vol. 3, Iss. 1. pp. 60–66.
38. Koo J., Kim Y.-G. Resource identifier interoperability among heterogeneous IoT platforms. International Computer Engineering Conference. 2022. Vol. 34, Iss. 7. pp. 4191–4208.
39. Mohammadian M., Parsaei H., Mokarami H., Kazemi R. Cognitive demands and mental workload: A filed study of the mining control room operators. Heliyon. 2022. Vol. 8, Iss. 2. e08860.
40. Hart S. G., Staveland L. E. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Advances in Psychology. 1988. Vol. 52. pp. 139–183.
41. Ruxton G. D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology. 2006. Vol. 17, Iss. 4. pp. 688–690.
42. Al-Badi A., Khan A., Eid-Alotaibi. Perceptions of learners and instructors towards artificial intelligence in personalized learning. Procedia Computer Science. 2022. Vol. 201. pp. 445–451.

Полный текст статьи Технология дополненной реальности как средство технического обслуживания оборудования металлургических производств
Назад