Журналы →  Chernye Metally →  2023 →  №5 →  Назад

Cast Iron Production
Название The results of physical modeling of the loading of manganese ore by a trough device as an additive to iron ore raw materials of blast-furnace smelting
DOI 10.17580/chm.2023.05.01
Автор A. S. Kharchenko, L. A. Zakutskaya, M. V. Potapova, S. K. Sibagatullin
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

A. S. Kharchenko, Dr. Eng., Associate Prof., Head of the Dept. of Metallurgy and Chemical Technologies, e-mail: as.mgtu@mail.ru
L. A. Zakutskaya, Postgraduate Student, Dept. of Metallurgy and Chemical Technologies
M. V. Potapova, Cand. Eng., Associate Prof., Dept. of Metallurgy and Chemical Technologies
S. K. Sibagatullin, Dr. Eng., Prof., Dept. of Metallurgy and Chemical Technologies

Реферат

Using the methods of physical and mathematical modeling, the dependencies of the intake of the amount of manganese ore unloaded in a mixture with iron ore raw materials from the BLT hopper to the top, on its location in the hopper and the number of the ordinal station of the tray in the matrix line for the conditions of single- and double-skip loading modes have been obtained. When manganese ore was placed in a mixture with other additional materials over iron ore in the hopper, the BLT ensured its flow in the time interval falling on the second and third annular zones of the top. The content of manganese ore changed during discharging from 33 to 15 %. The location of flushing materials in the layer of iron ore materials after the sinter before and after the pellets ensured its maximum amount in portions formed after 30–50 % of the time of the total production duration. The flow of flushing material into the first annular zone in the direction of movement of the tray amounted to 12–18 % of the mass of manganese ore loaded into the bunker, 20–21 % into the second zone, and 14–15 % into the third zone. When the manganese ore is located in the lower part of the hopper in the conditions of a single-skip loading mode, its entire loaded volume enters the top space of the furnace from the first station of the angular position of the tray in the course of its movement.

The article was prepared with the support of the grant of the President of the Russian Federation No. MD-1064.2022.4.

Ключевые слова Blast furnace, trough-type BLT, manganese ore, charge, distribution of materials along the radius, sinter, pellets
Библиографический список

1. Kharchenko А. S., Sibagatullin S. К., Pavlov А. V., Polinov А. А. Rational technological solutions in production of pig iron in blast furnaces of Magnitogorsk Iron and Steel Works. Chernye Metally. 2021. No. 12. pp. 10–15.
2. Tovarovskiy I. G. Regulatory assessment of the effect of BF parameters on coke consumption and productivity. Stal. 2014. No. 5. pp. 4–11.
3. Kharchenko А. S. Patterns of the intake of charge components by size from the BLT hopper into the top space of the furnace, depending on the loading conditions. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2018. Vol. 16. No. 3. pp. 46–56.
4. Sibagatullin S. K., Kharchenko A. S., Savchenko G. Yu., Beginyuk V. A. Blast furnace performance improved through optimum radial distribution of materials at the top while changing the charging pattern. CIS Iron and Steel Review. 2018. Vol. 16. pp. 11–14.
5. Sibagatullin S. K., Kharchenko A. S., Logachev G. N. The rational mode of nut coke charging into the blast furnace by compact trough-type charging device. The International Journal of Advanced Manufacturing Technology. 2016. Vol. 86. No.1–4. pp. 531–537.
6. Sibagatullin S. K., Kharchenko A. S., Chevychelov А. V., Kolosov А. V., Gostenin V. А., Pishnograev S. N. Influence of the coke nut on the filtration of liquid smelting products in the hearth of a blast furnace. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2010. No. 4 (32). pp. 28–30.
7. Kharchenko A. S., Sibagatullin S. K., Kolosov А. V. Using neural network modeling to study the gas-dynamic mode in the lower part of a blast furnace in the conditions of its operation with a coke nut. Izvestiya vuzov. Chernaya metallurgiya. 2011. No. 11. pp. 23–26.
8. Sun Yongqi, Zheng Kai, Liao Junlin, Wang Xidong et al. Effect of P2O5 addition on the viscosity and structure of titanium bearing blast furnace slags. ISIJ Int. 2014. No. 7. pp. 1491–1497.
9. Jeong In-Hyeon, Jung Sung-Mo, Kim Hyun-Soo, Sasaki Yasushi.Effect of surface tension on flow behaviors of liquid iron and slag in coke bed. The Iron and Steel Technology Conference and Exposition, Indianapolis, 5-8 May. 2014. pp. 493–498.
10. Wang Fujia, Lu Qing, Chen Shujun. Research of TiO2/SiO2 influence on furnace burden's dropping performance of vanadium-titanium magnetite. Iron Steel Vanadium Titanium. 2015. Vol. 36. pp. 79–83.
11. Tian Ye, Chen Shujun, Lu Qing, Sun Yanqin et al. Study on fluidity of BF slag with high alkali and TiO2 content. Iron Steel Vanadium Titanium. 2016. No. 5. pp. 91–95.
12. Nishioka Koki, Maeda Takayuki, Shimizu Masakata. Effect of FeO in dripping slag on blast furnace hearth drainage. Iron and Steel Inst. Jap. 2006. No.12. pp. 986–995.
13. Bigeev V. А., Sibagatullin S. K., Kharchenko A. S., Panishev N. V., Potapova М. V., Lunev U. D. Washing the hearth of a blast furnace with silica-manganese ore of the Niyazgul deposit. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2018. No. 3 (26). pp. 12–16.
14. Kryachko G. Yu., Avdeev R. V. On the question of the behavior of manganese in a blast furnace. Theory and practice of pig iron production: Proceedings of the International Scientific and Technical Conference dedicated to the 70th anniversary of Kryvorizhstal, Krivoy Rog, May 24–27. 2004. pp. 341–343.
15. Dolinskiy V. А., Nikitin L. D., Portnov L. V., Bugaev S. F., Domnin К. I. Improving the drainage capacity of blast-furnace slag. Vestnik gorno-metallurgicheskoy sektsii RAEN. 2008. No. 22. pp. 41–50.
16. Polinov А. А., Pavlov А. V., Logachev G. N., Onorin О. P., Spirin N. А. Influence of converter slag consumption on blast furnace performance. Metallurg. 2017. No. 4. pp. 41–47.
17. Eremeev N. А., Lysyuk А. Zh. Experience in the industrial use of converter slag from the South Ural Nickel Plant as a deoxidizer in the JSC ChMK blast furnace shop. Stal. 2018. No. 3. p. 7.
18. Polinov А. А., Pavlov А. V., Spirin N. А., Logachev G. et. al. Continuous addition of BOF slag into the blast furnace burden. AISTech Conference Proceedings, Philadelphia, 7–10 May, 2017. pp. 317–322.
19. Kurunov I. F., Bolshakova О. G. Briquettes for washing the hearth of blast furnaces. Metallurg. 2007. No.5. pp. 46–50.
20. Chernavin А. Yu., Nechkin G. А., Chernavin D. А., Kobelev V. А., Terentev Е. А., Babanakov V. V. Washing of blast furnaces with special washing briquettes. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2010. No. 11. pp. 19–21.
21. Nechkin G. А., Kobelev V. А., Chernavin A. Yu. Formation of a blast-furnace charge in order to improve the filterability of the melt through the coke layer of the hearth. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2014. No. 9. pp. 23–26.
22. Onorin О. P., Spirin N. А., Lavrov V. V., Kosachenko I. Е., Rybolovlev V. Yu. Evaluation of the shape of the zone of viscoplastic masses of iron ore materials in a blast furnace by mathematical modeling. Izvestiya vuzov. Chernaya metallurgiya. 2013. No. 6. pp. 24–29.
23. Chun-lin С., Ling Z., Steven W. et al. Modelling the effect of MnO on slag properties and Mn, Si and S distribution in blast furnaces. Chin. Soc. Metals. 2009. pp. 1120–1124.
24. Zhilo N. L., Bolshakova L. I. Influence of replacing lime with magnesia on the physical properties of blast-furnace slags. Izvestiya vuzov. Chernaya metallurgiya. 1964. No. 8. pp. 25–27.
25. Sibagatullin S. K., Kharchenko A. S., Malikhanov Yu. S., Iglikova U. Zh., Semenyuk М. А., Beginyuk V. А. Technological parameters of blast-furnace smelting during local washing of the hearth with silica-manganese material. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2020. No. 2 (33). pp. 11–17.

Language of full-text русский
Полный текст статьи Получить
Назад