Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Analysis and prediction of phosphogypsum compaction in dumps for dump capacity substantiation
DOI 10.17580/gzh.2023.05.09
ArticleAuthor Kutepov Yu. Yu., Karasev M. A.

Research Center for Geomechanics and Mining Practice Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

Yu. Yu. Kutepov, Senior Researcher, Research Center for Geomechanics and Mining Practice Problems, Candidate of Engineering Sciences,
M. A. Karasev, Professor of Department, Doctor of Engineering Sciences


Phosphoric acid production in apatite and phosphate rock processing involves by-production of phosphogypsum which is placed in dumps, landfills and gypsum storage facilities. Phosphogypsym has specific mineral and chemical composition, possesses peculiar physical and mechanical properties, and it is highly susceptible to compaction when piled in dumps. The lab-scale and in-situ deformation testing and monitoring of various phosphogypsum types made it possible to substantiate the deformation behavior model of the rock and to determine its mechanical properties. In view of the complex structure of phosphogypsum storage facilities and considering the deformation specifics of this manmade rock, prediction of phosphogypsum compaction should use 3D FEM-based modeling. Numerical modeling improves reliability of geomechanical behavior prediction in phosphogypsum dumps in terms of the volumetric deformation by taking into account nonlinear variations in physical and deformation parameters of the material in the range of compressive stresses. In a general case, the values of average stresses and bulk deformations are correlated via the laws of plastic compaction. A 3D model was constructed and compaction prediction was carried out as a case-study of a waste dump. The studies revealed possibility of increasing the phosphogypsum dump size by 15% of the project size with the height increase of the dump to 120 m. The significant economic effect comes from the land preservation, as well as from the reduction of cost of land reclamation and new dump construction.

keywords Phosphogypsum, compaction, modeling, finite element method, dumps, industrial waste, manmade ground

1. Hawley M., Cunning J. Guidelines for Mine Waste Dump and Stockpi le Design. Leiden : CRC Press/Balkema, 2017. 370 р.
2. Kondakova V. N., Pomortseva A. A., Pospehov G. B. The Comparison of the Russian and Foreign Mining Wastes Classification Systems. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 666, No. 5. 052001. DOI: 10.1088/1755-1315/666/5/052001
3. Kondakova V. N., Pospehov G. B. Dependence between the parameters of storage of artificial soils from their specific properties. Scientific and Practical Studies of Raw Material Issues. London : CRC Press, 2019. pp. 11–17.
4. Kutepov Yu. I., Kutepova N. A., Mukhina A. S., Moseykin V. V. Geological, geotechnical and geoecological problems of reclamation of land disturbed by dumping in open pit coal mining in Kuzbass. GIAB. 2022. No. 5. pp. 5–24.
5. Trushko V. L., Protosenya A. G. Prospec ts of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019. Vol. 236. pp. 162–166.
6. Karablin M., Gurev D., Prostov S. Automated Stability Analysis of So il Slopes. Proceedings of IV International Innovative Mining Symposium. 2019. E3S Web of Conferences. 2019. Vol. 105. 01015. DOI: 10.1051/e3sconf/201910501015
7. Thiebes B., Bell R., Glade T., Jäger S., Anderson M. et al. A WebGIS decision-support system for slope stability based on limit-equilibrium modelling. Engineering Geology. 2013. Vol. 158. pp. 109–118.
8. Bakhaeva S. P., Gurev D. V. Stability Prediction in Earthfill Dams with Regard to Spatial Variability of Strength Properties of Loamy Soil. Journal of Mining Science. 2020. Vol. 56, No. 1. pp. 20–28.
9. Zhabk o A. V. A new concept of slope stability design. GIAB. 2022. No. 10. pp. 104–1 24.
10. Cheskidov V., Kassymkanova K.-K., Lipina A., Bornman M. Modern Methods o f Monitoring and Predicting the State of Slope Structures. Proceedings of IV International Innovative Mining Symposium. 2019. E3S Web of Conferences. 2019. Vol. 105. 01001. DOI: 10.1051/e3sconf/201910501001
11. Obregon C., Mitri H. Probabilistic approach for open pit bench slope sta bility analysis – A m ine case study. International Journal of Mining Science and Technology. 2019. Vol. 29, Iss. 4. pp. 629–640.
12. Duong V. B., Fomenko I. K., Nguyen T. K., Vi. T. H. L., Zerkal O. V. et al. Application of GIS-based bivariate statistical methods for landslide potent ial assessment in Sapa, Vietnam. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2022. Vol. 333, No. 4. pp. 126–140.
13. Glazunov V. V., Burlutsky S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modeling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022. Vol. 257. pp. 771–782.
14. Kutepov Yu. I., Kutepova N. A., Karasev M . A., Kutepov Yu. Yu. Prediction of deformation of hydraulic-mine dumps overlaid with dump embankment. Gornyi Zhurnal. 2016. No. 12. pp. 23–27. DOI: 10.17580/gzh.2016.12.05
15. Pendin V. V., Fomenko I. K., Gorobtsov D. N., Nikulina M. E. Integrated modeling of waste dump slope stability. Gornyi Zhurnal. 2018. No. 11. pp. 92–96. DOI: 10.17580/gzh.2018.11.17
16. Ku tepov Yu. I., Kutepova N. A., Levin B. V., Mironov V. E. Geomechanical provis ion of phosphogypsum stockpiling in high stacks. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. London : CRC Press, 2018. Vol. 2. pp. 1241–1248.
17. Smirnov Yu. D., Suchkov D. V., Danilov A. S., Goryunova T. V. Artificial soils for restoration of disturbed land productivity. Eurasian Mining. 2021. No. 2. pp. 92–96. DOI: 10.17580/em.2021.02.19
18. Kutepova N. A., Korobanova T. N. Features of deformation development in phosphogypsum dumps near the Balakovo town in the Saratov Region. GIAB. 2017. No. 10. pp. 132–140.
19. Ivochkina M. A. Engineering-geological maintenan ce of phosphogypsum dump stability : Dissertation of Candidate of Engineering Sciences. Saint-Peterburg, 2013. 172 p.
20. Fuleihan N. F. Phosphogypsum Disposal-The Pros & Cons of Wet Versus Dry Stacking. Procedia Engineering. 2012. Vol. 46. pp. 195–205.
21. Ting Lu, Wensong Wang, Zuoan Wei, Yonghao Yang, Guansen Cao. Experimental study on static an d dynamic mech anical properties of phos phogypsum. Environmental Science and Pollution Research. 2021. Vol. 28, Iss. 14. pp. 17468–17481.
22. Kutepova N. A., Kutepov Yu. I., Kudashov E. S., Danilev S. M. Strength of phosphogypsum mixed with nepheline slime in construction of embankments of gypsum ponds. GIAB. 2020. No. 10. pp. 67–78.
23. Saenko Yu. V., Shiranov A. M., Nevzorov A. L. Mechanical properties of phosphogypsum and trends its utilization. Construction and Geotechnics. 2021. Vol. 12, No. 3. pp. 84–93.
24. Alekseev A. V., Iovlev G. A. Adjustment of hardening soil model to engineering geological conditions of Saint-Petersburg. GIAB. 2019. No. 4. pp. 75–87.
25. Zhabko A. V. Rock failure criteria. GIAB. 2021. No. 11-1. pp. 27–45.
26. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock ma sses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
27. Iovlev G. A., Piskunov N. S., Bakhvalov E. D., Ochkurov V. I. Optimizing nonlinear soil body models for geotechnical conditions of Saint-Petersburg. GIAB. 2022. No. 7. pp. 148–163.
28. Garner S., Strong J., Zavaliangos A. The extrapolati on of the Drucker–Prager/Cap material parameters to low and high relative densities. Powder Technology. 2015. Vol. 283. pp. 210–226.
29. Vermeer P. A., Neher H. P. A soft soil model that accounts for creep. Beyond 2000 in Computa tional Geotechnics. Ten Years of Plaxis International : Proceedings of the International Symposium. Rotterdam : A.A. Balkema, 1999. pp. 249–261.
30. Benz T., Wehnert M., Vermeer P. A. A Lode Angle Dependent Formulation of the Hardening Soil M odel. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics. Goa, 2008. pp. 653–660.
31. Vasilev M. Yu. Features technology of modelling waste bank phosphite by results to laser-scanning survey. Journal of Mining Institute. 2011. Vol. 189. pp. 198–201.
32. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. GIAB. 2022. No. 6-2. pp. 60–79.
33. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Journal of Mining Institute. 2022. Vol. 254. pp. 173–179.
34. Mustafin M. G., Kovyazin A. V. Using of spatial models оf objects for geodetic monitoring of deformation processes. Journal of Mining Institute. 2012. Vol. 198. pp. 191–193.
35. Plaxis 3D. 3D engineering designs. Available at: (accessed : 15.12.2022).
36. Schanz T., Vermeer P. A., Bonnier P. G. The hardening soil model: Formulation and verification. Bey ond 2000 in Computational Geotechnics. Ten Years of Plaxis International : Proceedings of the International Symposium. Rotterdam : A.A. Balkema, 1999. pp. 281–290.
37. Strokova L. A. definition of parameters for numerical modeling of soil behavior. Izvestiya Tomskogo politekhnicheskogo universiteta. 2008. Vol. 313, No. 1. pp. 69–74.

Full content Analysis and prediction of phosphogypsum compaction in dumps for dump capacity substantiation