Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Geomechanical monitoring of slope stability in pitwall and dumps in coal mining
DOI 10.17580/gzh.2023.05.10
ArticleAuthor Kutepov Yu. I., Kutepova N. A., Ponomarenko M. R., Kutepov Yu. Yu.

Research Center for Geomechanics and Mining Practice Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

Yu. I. Kutepov, Head of Laboratory, Professor, Doctor of Engineering Sciences,
N. A. Kutepova, Chief Researcher, Doctor of Engineering Sciences
M. R. Ponomarenko, Researcher, Candidate of Engineering Sciences
Yu. Yu. Kutepov, Senior Researcher, Candidate of Engineering Sciences


Extensive development of coal production involves growing operations at new sites with complicated geological and hydrogeological conditions and deep-level coal occurrence, which forces steeper slopes of pitwall and external dumps. The geomechanical monitoring of slope stability in pitwall and dumps is a key mission of safe performance of mines and reduction of expenditures connected with elimination of contingencies and aftereffects. The authors propose a methodical approach to a subject-oriented geomechanical monitoring to ensure required efficiency of the stability control at geotechnical facilities at optimized material and technical support of the arrangements and activities. The approach is science-based and practically approved. An advantage of the proposed procedure, alongside with the feasibility of analyzing the integrated influence of different factors on a mining facility and its complexity, is the improved reliability of the analysis owing to an expanded set of partials. Selection of monitoring techniques pursues the monitoring arrangement and implementation standards: a more complex subject of observation requires a higher level of automation, operational efficiency, coverage and accuracy. Thus, monitoring of complex and extremely complex facilities should use a complete package of automated terrestrial methods while simple facilities quite often do with visual inspection. A promising trend of perfection of a geomechanical monitoring system is the on-line information-and-analysis monitoring using geoinformation and web technologies.

keywords Geotechnical facilities, slope stability, integrated monitoring, geodesy and surveying, hydrogeological survey, geomechanical designs

1. Sergina E. V. Integrated monitoring of nature-and-technology systems in open pit coal mining : Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2015. 165 p.
2. Vasileva A. D. Geotechnical validation of high dump slope stability in coal fields in Kuzbass : Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2019. 186 p.
3. Zhabko A. V. A new concept of slope stability design. GIAB. 2022. No. 10. pp. 104–124.
4. Zhabko A., Volkomorova N., Zhabko N. Theoretical basis for calculation of the quarries sides for collapse. Ural Mining Decade : XVIII Scientific Forum. 2020. E3S Web of Conferences. 2020. Vol. 177. 01004. DOI: 10.1051/e3sconf/202017701004
5. Protosenya A. G., Kutepov Yu. Yu. Stability estimation of hydraulic fills in undermined areas. GIAB. 2019. No. 3. pp. 97–112.
6. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019. Vol. 236. pp. 162–166.
7. Mazurov B. T., Mustafin M. G., Panzhin A. A. Estimation Method for Vector Field Divergence of Earth Crust Deformations in the Process of Mineral Deposits Development. Journal of Mining Institute. 2019. Vol. 238. pp. 376–382.
8. Read J., Stacey P. Guidelines for Open Pit Slope Design. Collingwood : CSIRO Publishing, 2009. 487 p.
9. Martin D., Stacey P. Guidelines for Open Pit Slope Design in Weak Rocks. Leiden : CRC Press/Balkema, 2018. 416 p.
10. Guidance for observation of edge, slope and dump deformations on pits and for development of operations for their provision and stability. Leningrad, 1971. 187 p.
11. Sharon R., Eberhardt E. (Eds.). Guidelines for Slope Performance Monitoring. Leiden : CRC Press/Balkema, 2020. 330 p.
12. Cheskidov V., Grobler H., Kurenkov D., Lipina A. Slope Monitoring Systems Design for Mining Enterprises. Proceedings of V International Innovative Mining Symposium. 2020. E3S Web of Conferences. 2020. Vol. 174. 01025. DOI: 10.1051/e3sconf/202017401025
13. Ponomarenko M. R., Kutepov Yu. I., Volkov M. A., Grinyuk A. P. Satellite methods within integrated land surface deformation monitoring in a mine field. GIAB. 2020. No. 12. pp. 103–113.
14. Ismagilov R. I., Zakharov A. G., Badtiev B. P., Senin N. V., Pavlovich A. A. et al. Experience of Using (Testing) Ground Penetrating Radar on Construction Site for Steeply Inclined Conveyor Complex in Southern Pit of Mikhailovsky GOK. Gornaya promyshlennost. 2020. No. 3. pp. 84–90.
15. Ismagilov R. I., Zakharov A. G., Badtiev B. P., Senin N. V., Sharikov I. S. et al. Unmanned aerial vehicles for prompt solution of theoretical and applied problems: A case-study of Varichev Mikhailovsky GOK. Gornaya promyshlennost. 2020. No. 3. pp. 26–30.
16. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Journal of Mining Institute. 2022. Vol. 254. pp. 173–179.
17. Valkov V. A., Vinogradov K. P., Valkova E. O., Mustafin M. G. Creating highly informative rasters based on laser scanning and aerial photography data. Geodeziya i kartografiya. 2022. Vol. 83, No. 11. pp. 40–49.
18. Moseykin V. V., Galperin A. M., Cheskidov V. V., Punevsky S. A. Enhancement of automated remote slope monitoring in mines. Gornyi Zhurnal. 2017. No. 12. pp. 82–86. DOI: 10.17580/gzh.2017.12.16
19. Cheskidov V. V., Manevich A. I., Lipina A. V. Big data obtaining and analysis in the mining structures state monitoring practice. Gornaya promyshlennost. 2019. No. 2. pp. 86–88.
20. Grishchenkova E. N. Development of a Neural Network for Earth Surface Deformation Prediction. Geotechnical and Geological Engineering. 2018. Vol. 36, Iss. 4. pp. 1953–1957.
21. Naghadehi M. Z., Jimenez R., KhaloKakaie R., Jalali S.-M. E. A new open-pit mine slope instability index defined using the improved rock engineering systems approach. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 61. pp. 1–14.
22. Ponomarenko M. R., Kutepov Yu. I., Shabarov A. N. Open pit mining monitoring support with information and analysis using web mapping technologies. GIAB. 2022. No. 8. pp. 56–70.
23. Thiebes B., Bell R., Glade T., Jäger S., Anderson M. et al. A WebGIS decision-support system for slope stability based on limit-equilibrium modeling. Engineering Geology. 2013. Vol. 158. pp. 109–118.
24. Feiyue Liu, Zhenqi Yang, Wenxue Deng, Tianhong Yang, Jingren Zhou et al. Rock landslide early warning system combining slope stability analysis, two-stage monitoring, and case-based reasoning: a case study. Bulletin of Engineering Geology and the Environment. 2021. Vol. 80, Iss. 11. pp. 8433–8451.
25. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. GIAB. 2022. No. 6-2. pp. 60–79.
26. Ponomarenko M. R., Kutepov Yu. I. Mining Complexity Assessment to Substantiate Deformation Monitoring at Open Pit Mines. Journal of Mining Science. 2021. Vol. 57, No. 6. pp. 986–994.
27. Ponomarenko M. R., Kutepov Yu. I. Using the typification of mining-engineering facilities to substantiate deformation monitoring of opencast mining. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2020. No. 4(60). pp. 115–122.
28. Cheskidov V. V., Kurenkov D. S., Manevich A. I. Modern methods and means of effective control in mines toward ecological and industrial safety. GIAB. 2017. No. 6. pp. 188–199.
29. Glazunov V. V., Burlutskiy S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022. Vol. 257. pp. 771–782.
30. Kutepova N. A., Moseykin V. V., Kondakova V. N., Pospekhov G. B., Straupnik I. A. Specificity of properties of coal processing waste regarding their storage. GIAB. 2022. No. 12. pp. 77–93.
31. Melnikov N. N., Kalashnik A. I., Kalashnik N. A., Zaporozhets D. V. Integrated Multi-Level Geomonitoring of Naturaland-Technical Objects in the Mining Industry. Journal of Mining Science. 2018. Vol. 54, No. 4. pp. 535–540.
32. Ismagilov R. I., Kozub A. V., Badtiev B. P., Pavlovich A. A. Implementation monitoring of safety at the construction area of a steep-inclined conveyer complex at the south open pit of Mikhailovsky GOK. Gornaya promyshlennost. 2020. No. 1. pp. 120–126.
33. Melikhov M. V. Features of geoinformation space monitoring of mining naturaltechnical systems. GIAB. 2022. No. 12-1. pp. 29–41.
34. Cheskidov V., Kassymkanova K.-K., Lipina A., Bornman M. Modern Methods of Monitoring and Predicting the State of Slope Structures. Proceedings of IV International Innovative Mining Symposium. 2019. E3S Web of Conferences. 2019. Vol. 105. 01001. DOI: 10.1051/e3sconf/201910501001
35. Mustafin M. G., Kologrivko A. A., Vasiliev B. Yu. Accuracy of digital terrain modeling based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023. No. 2. pp. 56–62. DOI: 10.17580/gzh.2023.02.09

Full content Geomechanical monitoring of slope stability in pitwall and dumps in coal mining